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This book deals with stationary and nonstationary ra _dom processes in linear
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puts and outputs. The application of the mathematical methods expounded is illus-

trated by many practical examples related to various phys cal and engineering pro-
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PREFACE

At present a wide range of problems related to various branches of physics

and engineering are solved by probability methods. Naturally, no detailed exposition

of all the multitudinous applications of probability theory and mathematical statistics

to various physical and engineering problems can be included within the scope of

one book. For the small monograph hereby presented to the reader a much smaller

range was chosen: the theory of electrical and mechanical systems with lumped

constants under a statistically characterized external force.

The material is arranged in the following manner. After the first chapter
which is of introductory nature, the principles of the theory of random functions and

their linear transformations are given in brief. This mathematical material, sub-

sequently required, constitutes the second chapter.

On the basis of relationships obtained in ChapterTwo, the third chapter deals

with the general methods of analysis of random processes in linear systems with

lumped constants. Beside the generally accepted spectral method, the method of

stochastic differential equations and the method of impulse characteristics are des-
cribed here in sufficient detail.

The equations given in this chapter for each of the three methods mentioned

are applicable not only to systems with one input and one output, but also to the

most general problem of random action upon _ linear system which has several in-

puts and outputs. Several problems are then examined by way of illustration.

These problems are solved by each of the three methods, thus affording their
comparison.

In Chapter Four the application of the methods of Chapter Three to a wider
range of problems is shown (the Brownian movement, electric fluctuations, ther-

mal movement of a galvanometer, transmission of telegraph signals and fluctuation

noise through a low-pass filter, elements of the theory of optimal systems). The
results obtained here should in no case be considered as exhaustive. The author

has only desired to show with the aid of these examples the diversity of possible

problems relating to random action upon a linear system and to further exemplify
the general methods.

Chapter Five contains mainly the theory of inertialess nonlinear systems under
random action,for which such general relationships have been obtained which make

it possible to carry out calculations in all cases met with in practice. The hitherto

litHe-developed theory of random processes in inertial nonlinear systems is briefly
surveyed in a separate section.

In Chapter Six a series of practical examples is given which illustrate the meth-
ods of Chapter Five.

In the course of writing this book, the author has endeavored to confine him-

self as far as possible to the higher mathematics course given in technical institutes.

Only elementary notions of the theory of probability and operational calculus are



requiredofthereader.These notions can, if necessary, be easily obtained from

existing specialized literature. The author has consciously allowed some instances
of lack of mathematical rigor in computations. Refraining from excessive mathe-

matical rigor makes it possible to substantially simplify the exposition and, at the
same time, in the overwhelming majorityof practical cases, it does not impose any

restriction on the applicability of results obtained. The author assumes that some

readers will easily notice and supply these deficiencies in rigor while others will

readily accept them.

In conclusion the author considers it his pleasant du'y to express his gratitude

to the critics Prof. S.M. Rytov and Dr. of Phys. Math. _ciences Yaglom for a
number of valuable critical remarks, and the editor, Candidate Phys. Math. Sc.

A.I. Kostienko, for careful preparation of manuscripts for the press.



Chapter One

GENERAL CONCEPTS OF RANDOM PROCESSES

§1. Dy_amical and Statistical Laws

Any phenomenon occuring in nature is bound up with an infinite set of

other phenomena. Choosing any such phenomenon as subject of study, we find that

among these connections there are essential ones, which determine the basic

features of the phenomenon under study, but there are also nonessential ones, which affect

only some secondary features. In studying the phenomenon it is necessary to find

out and take into account all the essential connections and simultaneously to disre-

gard nonessential details caused by subsidiary connections. Thus, not the very phe-

nomenon in all its complexity is subject to analysis, but a simplified model of it,

whose behavior coincides basically with the behavior of the subject of our study in
all but minor and nonessential details.

The study of the model constructed leads to the setting up of some laws. Only

the abstract model of the phenomenon follows these laws. However, if the schema-

tization of the latter has been carried out properly, the laws also describe

the basic features of the phenomenon studied. Thus the criterion of correctness of

a model adopted in some theory is the agreement between theoretical results and

practical, experimental data.

The model of the phenomenon, later to be analyzed, should be con-

structed on the basis of making explicit its connections with other phenomena. Here

the subdivision of factors into essential and nonessential ones depends not only on
the specific nature of the phenomenon itself, but also on the problems that the

theory will have to solve.

At present a great many schemes of physical phenomena are known, in which

for definite external forces, the system's behavior is fully determined by its

initial state. Such are, for instance, the free fall of a body in a gravitational

field; the two- and many-body problem well known in celestial mechanics; an

electric circuit with constant parameters under given excitation, etc. The

laws which apply to schemes of this sort are known as dynamical. These laws are

characteristic of a unique specification of the consequences of a given causes.

Beside models of phenomena which lead to the setting up of dynamical

laws, other well-known models lead to the formulation of laws of a different

nature -- statistical laws. To clarify this concept, let us consider as an example

the model employed in the kinetic theory of gases.

The kinetic theory of gases deals with such parameters of the gas as pressure,

temperature, viscosity, specific heat and others. These parameters characterize

the gas as a whole and are determined by the combined action of all its molecules.

A gas in an assembly of a great many molecules. In collective phenomena of

thermal motion of a gas, the individual features of the behavior of its separate



particles are obliterated and the parameters mentioned are mainly of a statis-

tical nature, i.e., are obtained as a result of averaging the effects of the indi-

vidual particles. Therefore, the kinetic theory of gase_ can be constructed only
on the basis of a statistical model of a gas, a model that slows to formulate suitable

statistical laws.

At the basis of the classical kinetic theory of gases lies the following model.

A vessel of.arbitrary shape contains a given number of gas molecules

of definite mass. Each molecule is regarded as an ent'.rely free body
not acted upon by gravity and by other molecules (otherwise than by colli-

sion with them). In the interval between collisions wit_l other molecules or with

the walls of the vessel each molecule moves in a straight line. The change of di-

rection in collisions follows the laws of collision of elastic _pheres. The initial

state of the molecules is statistically characterized_ their root-mean-square

velocity is given and it is assumed that each molecule can with equal probability

be at any point in the space enclosed by the vessel and have any direction of the

velocity vector.

Side by side with the described statistical model of a gas, a dynamical model

of it can also be constructed. For this it is necessary to consider a vessel of a
given shape instead of an arbitrary one and also to indicat_ the positions and velo-

city vectors of all molecules at a given initial time momert.

Provided that we have at our disposal unlimited co_aputational means,

we can apply the laws of mechanics to the above-menti_,ned dynamical model

and compute the trajectory of each molecule for a time interval of arbitrary du-

ration. However, the computational difficulties connected with the solution of such

a problem are practically insurmountable. This becomes obvious if we consider

that one cubic centimeter of gas at normal pressure and temperature 0oc contains

approximately 3 • 1019 molecules, the number of collisions of each being of

the order of 10 9 per second. The impossibility of carryin:,_ out the necessary com-

putational work shows the infeasibility of the dynamical rmdel.

Yet another, more serious deficiency of fundamenlal nature affects

the dynamical model in this problem. Actually the beh; viorofan individual

molecule does not make it possible to draw any conclusion _ about the properties of

the gas as a whole, whilst these are the very properties w th which the kinetic theory

is concerned. Consequently, in this case the dynamical _nodel is in principle

unsuitable for establishing the laws in which we are interested.

In the case examined, the statistical approach is necessitated by the fact that

a very large number of particles participate in the phenomenon. We shall show an-

other example in which the statistical treatment is expedient, but where the collective

character of the phenomenon is somewhat different. This example refers to radio-

reception in the presence of random interference.

If the form of the interference acting at the time wh _n useful signals are

transmitted is known, then, knowing the construction and parameters of the radio-

receiver, one can always calculate with more or less labo • the distortion of the use-

ful signals by the interference. However, the results thus obtained are of no essen-

tial value for the theory of radio reception, since they are related to the particular
case at hand and do not make it possible to draw genera conclusions about the

effectiveness of any given radio-receiving apparatus.

In contrast, the statistical approach to the proble n makes it possible to

establish what distortions appear on the average (e. g., the average number of dis-

torted telegraph signs) for a given interference level. This makes it possible to



getanideaof the quality of the radio-reception method applied. Here the collective

character of the phenomenon lies in that the interference effects are investi-

gated for recurrent reception conditions, which on the average show no varia-
t ion.

The following conclusions can be drawn from the foregoing. If the course of

the physical phenomenon is mainly determined by a small number of principal cau-

ses (necessary events), thenthe dynamicalmodelis the one most suitable for its

study. Besides necessary events, we encounter other physical phenomena whose
basic features are determined by an exceedingly great number of factors which are

on the average of approximately equal effect (random events). We stress that a

random effect is just as causally determined as a certain event, but it differs
from the latter in the character of its causes.

It is impossible to construct a dynamical model of a random phenomenon,

to establish the laws which govern the individual random event, or to make an

even rough prediction of its course.

The laws of random phenomena are revealed by the observation ofagreat

number of events taking place under similar conditions or by their multiple

recurrence. These laws are qualitatively different from the laws which govern the

individual event. They are statistical and are studied with the aid of probability models
of these events.

§2. Random Processes

The random events studied by the classical theory of probability are events

which can either occur or not occur when a certain complex of conditions is realized.

Such are, for instance, the obtaining of a given number of points in casting dice, the

emissionofa given elementary particle in a given time interval by a radioactive atom,

the distortion of an individual telegraph sign by the random interference in the

communication channel, etc. The development of physics and engineering has

made it necessary to study phenomena of a different type-the random events

continuing in time, or, in other words, random processes.

One of the ftrst random processes studied byphysicists was the Brownianmove-

ment, i.e., the movement of minute particles suspended in a liquid or gas, discover-

ed in the year 1827 by the English botanist Brown. At the beginning of the twentieth

century, simultaneously with the elaboration of the theory of the Brownian move-

ment, the study of random voltages and currents in electric circuits resulting from

thermal agitation in their elements was begun. In the nineteen-twenties these in-
vestigations were extended to circuits with electronic tubes.

In all the examples mentioned, the random process was the result of thermal

movement of matter. However, it is easy to indicate a great number of random pro-

cesses caused by quite different factors. Such are, for instance, earth displace-

ments in quakes, ships rolling on rough sea, vibration of vehicles in motion on an

uneven road, acoustic noise, time variation of meteorological factors, variations

in the load on a mains network supplying many consumers, etc.

The first steps in the theory of random processes, dating back to the begin-

ningof the twentieth century,are typical of the fact that for each problem encountered

a specific method of solution was evolved, suitable only for the given problem or a

narrow circle of related problems. The general theory of random processes ap-

peared much later. Its foundations were laid by the works of the Soviet mathema-

ticians A.M. Kolmogorov and A. Ya. Khinchin published in the nineteen-thirties.



The problems dealt with by the theory of random pro_ esses can be subdivided

into two major groups. The first group contains the probh ms connected with the

mechanism by which the random processes are produced. Although some general

methods of investigating the problems of this group can be indicated, the

specific physical content of each problem generally shows through.

The second group contains problems relating to randc,m influence upon sys-

tems of various physical nature. Here dynamic analogies exist which make it pos-

sible to describe phenomena widely divergent in their nature, (mechanical, electri-

cal, acoustic phenomena) wlththe aldof a standard mathematical apparatus. These

analogies make this fieldof the theory of random processe_ similar in character to

the theory of oscillations which studies oscillatory process, is in various branches

of physics and engineering from a common point of view

The present work examines problems of the second group only, i.e., the

behavior of various systems under given random influences is studied. The mec-

anism by which these influences are produced is not examined in detail.

$3. The Role of the Theory of Random Processes ir_Engineering

The installations, apparatus and devices of modern engineering are systems

functioning under some external forces. This applies eqlally totheir assemblies

and elements. Examples are, a bridge subjected to the lo_d of vehicles and pedes-

trians, apparatus under electric tension, the rope of liftin,_gear subjected to

strain, and many others. In accordance with Sl the analysis of phenomena in the

systems mentioned is preceded by schematlzation oftheobject of study. This sche-

matization should be applied to the properties of the system and to the properties

of the external influence [input].

The methods of constructing schematized models of r,_alsystems are outside

the scope of the problems dealt with in this book. We shallj therefore, dwell only

on methods of schematizing external forces.

The majority of engineering apparatus is intended for repeated use under si-

milar working conditions. Therefore, their behavior is stu tied under external

influences of a known character, determined by these condllions.

Similar though they might be, operating conditions _ re never identical.

The same can be said of the external forces. The probhm of schematlzatlon

lies in that, that all essential properties and peculiartities 3f the input should

be considered while disregarding all its secondary features. Depending on the

character of the input, dynamic schematlzatlon is more convenient in some

cases, and statistical in others.

Dynamic schematlzation of the input is its representat .on by some well-

defined function of the time, whose form is established by analyzing the work-

ing conditions. Such idealization is expedient when the forrt of the input varies

only inconsiderably from case to case. Let us give one :xample. The alternat-

ing voltage of the mains network, to which the device investigated is connected

does not have a strictly constant amplitude, frequency and f_rm. However, in most

cases, this voltage can be succesafuly idealizedj and be considered sinusoidal, having

well-defined amplitude and frequency.

It is rational to use the statlstlcal schematlzation ol an input, i.e., to

consider it as if itwere some random process, for which th,: investigation of the

operating conditions gives only probability characteristics, when a great variety

of essentially different forms of input occurs.



Some such inputs are readily perceived in the examples of the preceding sec-

tion. We shall supplement them by one additional example, where dynamic schema°

tization of the input is possible, but the statistical one is more appropriate.

Until recently, in communication engineering, when analyzing some apparatus

or its individual elements, the signals transmitted along the channel were regarded

as determinate time functions of a certain form (dynamic schematization). Such an

approach to the problem is only the first approximation to reality. The point is that

any definite time function transmitted through the channel in a given interval consti-

tutes but one of the possible variants of the signal. The communication apparatus

should be designed for all the possible variants of a signal.

In most cases the number of possible variants of the signal is so great that

any attempt at a simultaneous or successive consideration of all of them is exceed-

ingly difficult. The situation becomes even more aggravated by the fact that noise

of extremely irregular character is superimposed upon the signal in the communica-

tion channel. Hence follows naturally the conclusion that it is more expedient to re-

gard the signal transmitted through the communication channel as a random process,

i. e., to apply a statistical schematization.

The examination of the external forces on various engineering apparatus shows

that in many cases the statistical schematization represents more closely their pro-

perties than does dynamic schematization. The same applies to many problems of

the theory of communication and automatic control, the theory of recording devices,

the theory of vibration, shocks and rolling experienced by structures, vehicles,

vessels and airplanes, and to many other cases. The statistical approach to such

problems is not yet widely used, mainly owing to its comparative novelty and to the

related fact that the statistical properties of various random actions are not well

known. This latter fact has also influenced the contents of this monograph, limiting

the variety of specific technical examples analyzed in it.



Chapter Two

RANDOM FUNCTIONS AND THEIR LINEAR TRANSFORMATIONS

§4. The Concept of Random Function

The mathematical image of a physical random process is the random func-

tion. Our exposition of the theory of random processes in linear physical systems

is therefore headed by the present chapter, in which we state the basic properties
of random functions and their linear transformations.

The random process gives in each of a great number of experiments, carried

out under similar conditions, a time function fk(t), where 14is the number of the

corresponding experiment. In the course of an individual experiment, a well-de-

fined value of fk(t) corresponds to each value of the argument t. Thus fk(t) is a de-

terminate function. It is called the realization of the random process f(t)in the k-th

experiment. The random nature of the process is manifested by the fact that the

form of the function fk(t) varies at random from experimen_ to experiment. To

characterize the random process it is necessary to indicate all its possible realiza-

tions and their probabilities.

In the mathematical theory of random processes the f_llowing more rigorous

formulation of the aforesaid follows from the concepts developed by A. N. Kolmogorov
/1/ in his axiomatic construction of the theory of probabilit y: the random function

f(t) is defined if a probability measure is given on the set o: its realizations.

Thus, the random function is a function of two variab:es: the time t and the

parameter k, enumerating all the possible realizations. F,,r any particular value

of k the function fk(t) is a determinate function. In contras:, if the time t is fixed,
the function becomes a random variable.

Let us note that among the possible values of t there :nay be such particular

values for which the random function equals a constant. Fcr instance, for the ran-

dom function which represents the response of some systen, to a random input, such

a particular value may be initial moment of this input.

We shall examine a somewhat different method of defining the random function

that we shall use below. This method is due to E.E. Slutskii /2/. It can be shown

that this definition is included in the former as a particular case.

The random variable f = f(t)corresponding to a selected time instant t is fully

defined ff its distribution function or probability density w(t is given. To character-

ize the random function, the mentioned distribution function or probability density

should be given for any time instant which lies within the tixrlelimits of observation

of the random process.



This characterization of the random function is still incomplete. The random

variables fl " f(tl)° f2 • f(t2) .... fn = f(tn) which correspond to the various time

instants t 1, t 2 .... tn, are in the general ease statistically dependent. The presence

of this statistical dependence makes it necessary to specify an n-dimensional distri-

bution law w (fl" " " f2 .... fn )" Here the number n has an arbitrary value. For

each n the time instants t 1, . t 2, ..., tn can be arbitrarily chosen within the limits

of observation time.

Thus, the random function is defined, if for any value of n an n-dimensional

distribution law w (fl' f2 .... fn ) is given, where the time instants t 1, t 2 .... t n

can be arbitrarily distributed within the limits of the time of observation.

In many cases this complete characterization of the random function is super-

fluous. The calculations necessary for practical purposes can be often carried out

if only the two-dimensional probability density w (fl' f2 ) is known. It is sufficient

for the solution of some problems to know only the one-dimensional probability den-

sity w(f). This is the case, for instance, if it is required to find the probability

that f shall exceed a given value a.

$5. Stationary and Nonstationary Random Functions

Let the n-dimensional distribution of the random function be given. We shall

fix the mutual positions of the corresponding n points tl, t 2 .... t n on the time axis

and then displace the set of these points along the time axis without changing their

relative positions. If all the distributions which determine the random function

remain constant under this displacement, the random function is called stationary.

Thus, a stationary random function is statistically invariant with respect to time-

translation.

For a stationary random function the one-dimensional probability distribution

is independent of the time t, the two dimensional distribution is dependent on the

difference t 2- t 1 only, etc.

In the general case the said time-homogeneity does not hold, and the random

function and random process described by it are nonstationary. The multi-dimen-

sional probability density of a nonstationary random function depends on the posi-
tion of each of the n time instants.

The random functions met with in many physical and engineering problems

can be considered, with sufficient accuracy, as stationary. Stationary processes

therefore occupy an important place in the modern theory of random processes. In
a number of cases, however, the random process is essentially nonstationary.

This hinders us from limiting the theory to the examination of only stationary pro-
cesses.

S6. Moments

As known from probability theory, the full characterization of a random vari-

able is given by its distribution law. Sometimes, however, such exhaustive informa-

tion on the random variable is superfluous. In this case the values of the first few
moments of the distribution law are often indicated instead of the distribution law

itself. An analogous situation exists in the theory of random processes. Here



one often refrains from considering n-dlmenslonal dlstrlbuti,)n laws and operates
with a finite number of moments.

The description of a random process with the aid of moments is less _ompre-

henmive than in using suitable distribution laws. However, in many probletns of the
theory of random processes probability densities are ratber difficult to obtain,

while moments are computed by quite elementary means _md describe suffi-

ciently well the phenomenon studied. Moments are therefore widely used in

the theory of random processes.

Moments are obtained by the averaging operation. In _onnecti_n with this we

shall first examine the question of averaging random functiol s.

As was shown in §4 the value of a random function depends on time and the

parameter k (realization number). On of the possible methods of computing an ave-

rage is by fixing a definite time instant and computing the ave.rage of the totality of

realizations of the random function. Here the operation of a_eraging can be applied

not only to" the values of the random function, but to any function of it. Exactly in

the same way one can select several time instants and apply the averaging operation

to any function of the corresponding values of the random function.

Another possibility is: selecting a certain number of realizations of the ran-

dom function and calculating their time-averages. As in the preceding case the

averaging operation can be applied to the value of the rando_ function, to any func-

tion of this value or of several such values at once. In the l_tter case it is first

necessary to fix definite positions of the corresponding time _or all time-axis points,

and to displace (in the course of calculation) these points alo_ig the time axis, with-

out changing their relative positions.

Consequently, a random function has average values wth respect to the set

of its realizations, and tlme-average values. The first correspond to definite time

instants, the second--to a definite realization of the random _unction.

In the general case, when the random process is nonstatlonary, the only aver-

age values of the first kind are of interest. These values are determined by the set

of possible realizations of the random function and characterLze the latter as a whole.

For a stationary process the time-average values are also c,msidered.

We now proceed to the definition of moments, starting _ith a one-dimensional
distribution w(f) at a time instant t. The moment of order _ of this distribution is

defined by:

+co

m,(t)---'_ f /',re,(/)(// (_ I, 2. 3 .... ). (2.1)
--ao

If follows from expression (2.1) that the moment my(t) is the average of the

random variable fv (t) over the set of realizations of the rand)m function. This

average is called the mathematical expectation of the randorf function fv (t) at time

t. We shall henceforth denote the mathematical expectation _,f a random quantity

A by the symbol M[A]. Accordlngly

m,(t) = M [f" (1)]. (2.2)

In general, the moments (2.2) are time-dependent ar.d are constants for

stationary random functions.

10



The simplest moment is the moment of first order or first moment

I,,, (t) = M [/(t)l (2.3)

which is the average of the random function at the time t over its set of reali-

zations.

The second moment

m 2 (1) = M [/2(t)] (2.4)

is the average of the square of the random function at the time t over its set
of realizations.

For the solution of numerous practical problems it is often sufficient to con-

sider only the first two moments of the random function. In some cases such a

characterization of the random process is insufficient and it is necessary to have

recourse to moments of a higher order, i.e., the third and fourth.

The moments of multi-dimensional distributions are introduced in an analo-

gous way. The moment of order v of the two-dimensional distribution w(fl, f2 )

will be any function of the form

+co

m,j¢,,. = f f s sl l/,. /21d/,eS.,= M (2.5)
- _o

where

l-t-j=_; .f,_/(t,); f'_.f(t2)-

It is easy to see that there are altogether v --1 different moments of a two-

dimensional distribution function, these moments corresponding to i = 1, 2, 3 ....

v --1. For i = 0 or i = v themomentofatwo-dimensionaldistributiondegenerates

into the corresponding function of a one-dimensional distribution,

The simplest moment of a two-dimensional distribution is the mixed second
order moment

m,, (t,, 4) = ,_ 1/(4) • /(t2)]. (2.6)

The moment (2.6) is the average over the set of realizations of the

product of two values of the random function corresponding to the instants t 1 and

t 2. If the moment mll(tl, t 2) is given, this defines the second moment (2.4) of the

one-dimensional distribution, since, setting tI = t 2 = t in (2.6) we have

mtt (t, t) : M [p(t)] : m2(t ). (2.7)

For a stationary random function of the moments (2.5) are functions of the

two variables t I and t 2. For a stationary function a time-translation leave the

probabilities of the process characteristics unaltered and hence the moments

are functions of only the time interval _ "_- It2--ta t"

Any moment of order v of the three-dimensional distribution w(f 1, f2" f3 )

is expressed by:

11



,.,_k (t,. _,,t,) = M [/' (t,) f (t.)./_ t_)l. (2.8)

where l'-_ j-_- k --_ _.

We shall note the fact that stating the third order m,)ment of the three-

dimensional distribution

mm(t. tz. ts)--- hi [l(tl) "l(tz) "/(tl)! (2.9)

defines also third-order moments of a two-dimensional distribution. The transition

to the latter is effected by equating the correspondtng two time instants in expres-

sion (2.9). In exactly the same manner, fourth-ordermomentsofatwo-dimensinnal

distribution are particular cases of fourth-order moment_ of a four-dimensional

distribution.

We shall draw the following general inference from the aforesaid. A random

function is defined, i.e., an n-dimensional distribution law w(f 1, f2' "fn )' is given

for any n, if for any v the moment

m,_ L(tl, t, ..... t,)----M[/(tJ, f(t,)f(t,)l. (2.1o)
.-;--

is known.

By equating appropriate arguments to one another we can obtain from the

moments (2.10) all other moments, whilst the totality of .illmoments determines

uniquely the n-dimensional distribution law for any n.

Since we shall chiefly meet the following moments of the type of (2.10), we

shall denote for brevity:

roll i(tl, t2 ..... t,)_m,(tz, t 2..... t,). (2.11)

Beside the moments examLned above one often mee=s also central moments.

A central moment of order v of a v -dimensional distribution is defined by:

p.(t;, t: ..... t.) = M [{/(t,)-- m, (t,)} {l(tz- m, (t2)} •
...{/(t,)---m,(t_)}]. (2.12)

It follows from (2.12) that for a random functior, whose first moment

identically vanishes, every moment is central.

A central moment of the ftrst order always equals zero. In fact, since the

mean value of a sum equals the sum of mean values of rye summands, we have,

_,(0= hilf(t)-m,(t)l=hil/(t)l-m (t)----0. (2.13)

We shall examine a central moment of the second c,rder. Carrying out cal-

culations analogous to the preceding we obtain:

12



I_(q, t,)= M I[/(t,)- m, (t0] {/(t2) -- ra, (t._)}l =

= M [/(tJ •/(t2)l --m_ (q) M I/(t_)l -- m, (t2) • M [l(t,)l 4-

+ ml (t0 • m, (t2) = m2 (q, t_) -- rn_ (t_) • In I (t2). (2.14)

The relationships for central moments of higher order are obtained in an
analogous manner.

[nthe particular case when tl=t2=t, expression (2.14) gives

I_, (t) = ,44 [{,f (t) -- m, (t)}'] = m 2 (t) -- m_ (t). (2.15)

The quantity P2 (t) is the average over the set of realizations of the square

deviation of the random function from its average value m 1 (t) corresponding to a

e 2time instant t, i.e., is qual to its dispersion [variance] o (t) at this instant.

The second order central moment St2 (t 1, t 2) is often called autocorrelation

ratio and denoted by k(tl, t2). Thus,

k(t,, tz)=p=(tl, t2). (2.16)

The expression

p(11, t2 ): /_(tv t2)
0_,_: = _t_) (2.17)

is called the normalized autocorrelation ratio. It corresponds to the correlation

coefficient widely used in probability theory.

For obtaining the above-examined moments, the operation of averaging over

the set of realizations oi the corresponding random function was employed. This

method is general and equally applicable to stationary and nonstationary ran-

dom functions. For studying random functions another method of determining

moments, giving the same results, is also possible.

The statistical properties of a stationary random function do not vary with

time. It follows from this time-homogeneity that the average over the set of
realizations calculated for a chosen time instant gives the same result as the

time-average of a single realization. In the latter case the time of observation of

the random process should be sufficiently long (strictly speaking, infinite). This
proposition is known as the ergodic theorem,

The ergodic theorem Is valid under sufficiently general conditions which are

generally fulfilled in practical problems. The proof of this theorem is given in the

work of A.M. Yaglom /3/ as well as in the monograph of V.I. Bunimovich /4/.

Thus, it is possible to calculate the moment of a stationary random process

when a single realization of it fk(t), corresponding to a sufficiently long observation

time, is g[ven. The computation of, say, the first moment is carried out thus:

T

ml = M[]'(t)l _---
T_o_

0
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Forthesecondmomentofatwo-dimensionaldistributionwehave:
T

_., (_) == M I/tO/(t -t- _)] = lira + f ]k (t)]k (t-r-_) dt. (2.19)
T_.oo

(2.19}

The computation of moments from a single realizati, m of the observed ran-

dom process has great practical advantages.

$7. The Derivative of a Random Function

Let us consider the derivative of an individual realir_ation fk(t) of a random

function fit). Since the realization fk(t) is a determinate funct ion of time, an analogous

statement with respect to its derivative f'k(t) is also true. Thus, the derivative

f'k(t) is a derivative in the usual sense and all the propositions of the differential

calculus of determinate functions are applicable to it.

Let us now fix some time instant t and pass from one realization of the

random function to another. In this case the value of the derivative f'k(t) will

vary in a random manner with the realization number. This random variable is
called the derivative of the random function fit) at the moment t. The following

definition is equivalent to the above: the derivative of the random function at the

moment t is the limit*

.m/(t + _t) -/.} = -_'d_'"'=/' (0 ¢2.2o)
At _ o At

We shall explain the relation between the random function itself and its

derivative. For this we shall first take a normal distribution function, i.e., a

function defined by normal n-dimensional distribution laws. We shall assume for

the sake of simplicity that the mentioned function is stationary. Its two-dimensional

probability density is then of the form

I e×p --- _l=_-_) ' (2.21)

where we denote for the sake of brevity

f, :/(t,); f_:f(t2). (2.22)

2
The parameters o and p which appear in (2. 21) are, respectively,

the dispersion and the normalized autocorrelation ratio o: the random process con-
sidered, the first one being constant with respect to time byvirtue of the stationary

nature of the process, and the second one depending only on the time interval

At=t 2-t 1 .

We shall change the variables in the distribution law (2.21} thus

Jr=f; f2_f-_-Af • (2.23)

• The conditions for the existence of the limit (2.20) will be considered below.

14



Hencewesh_ll obtain after simple transformations*

t 2/_ (I + a/_!
wl/. r'J'l= 2,_ iy-T-_-__p_exp[- -_)+2¢'.a/(t--v) (2.24)

ment
In order to obtain the one-dimensional probability density for the incre-

_f it is necessary to compute the integral
4(:0

w(Af)= / w(f, Af)d/. (2.25)

The value of the followingdefinite integral is given in handbooks (see /6/) as

f e-_'=_Xdx = eaP . (2.26_
-Co

Making use of (2.26) we find:

1 exp[ _/2 l (2.27)w(-V)-= _ v'-_ofi_-_p 2(1_),o -p) "

Thus the increment A/ represents a normal variable with dispersion

o_/, : 2", _(I -- p). (2.28)

Consequently, if the limit (2.20) exists, then, passing to the limit for

* As known from probability theory /5/, the rule of the change of variables as

applied to two-dimensional distribution laws is formulated in the following way.
If the new random variables _ and q are related to the old variables x and y
by

=f(x,y), _=_(x,y),

then the two-dimensional probability density w(_, _l) is expressed by the two-
dimensional probability density w(x, y) in the following fashion

Y)

O(x, y)

where

0 (_. _) _-" _

d(x,y) -- d_-. 0,)

15



_4.-*0, we shall obtain again a normal variable. Thus, t_e derivative of a norm-

ally distributed random function has also normal distribution.

Let us find the dispersion of the derivative. The dispersion of the quotient

h)¢ M equals

2 a_t 2__ [I -- p (At)] (2.29)
¢:af/ af _-- --_ --_ h#

For 52-*0 expression (2.29) becomes indeterminate since p(_)--+ I. To re-
move this indeterminacy we shall expand p(ht) in a power series in terms of At:

p (At) _- 1+ p'(o). At + _- p" (0) • hi' -t • • •
(2.30)

Expression (2.29) assumes now the form:

9' (0) ._t + 2 r" (0) _f_ + ...
2

a_r at _--- -- 2_2 _t I
(2.31)

We shall examine this result. Byvirtueofthe fact that the autocorrelation

ratio p(hi) is an even function, two cases are possible: 1) the point hi = 0 is an
extremum, i.e., p'(0)_-- 0; 2) the derivative p'(0) at the point hi _ 0 does not

exist (such an example is the function p(f_tl__e-,larl ). I: is obvious that the deri-

vative of a random function e×ists only in the first case. For p'(0) = 0, going
over to the limit in (2.3l) (At -*0)we hayer

d/ "-
M [(_-)J=--_zp"(O). (2.32)

Expression (2.32), if meaningful, is always positive. Consequently, for

$,'10)- 0, the function p(._t) has an extremum at the point M = 0, this ex-
tremum being a maximum, since _(0) = 1 and for At=0 we have_(_t)_ I.

whence it follows that we always have p'(0)_.0.

We shall now sum up the results of the foregoin_ analysis. As mentioned

above, the derivative of a normally distributed random f_nction, if its exists, has

norms.1 distribution. This result is directly related to th_ statement of probability

theory that any linear function of several normal random variables has also a

normal distribution. As the structure of (2.20) shows, the process of calculat-

ing the derivative is equivalent to forming a linear fun'.tion of the two random

variables /(t+ hi) and ](/)with subsequent passage to the limit.

It is necessary for the existence of the derivative tkat there should be a statis-

tical dependence between values of the random function which are sufficiently

near in time. But if values arbitrarily near in time are Ully independent statis o

tically, the probability that any realization of the random function is discontin-

uous at all points of the time axis and does not have a dezivative is unity, i.e., the

random function does not have a derivative. However, the existence of a statis-

tical dependence is not sufficient. The statistical depends ace should be such that the

condition [/(0) = 0 is fulfilled.

If we restrict ourselves to the examination of rando vt variables of finite aver-

age values and dispersion, which case is of fundamental i lterest in practice, we can

say that the sum of several variable having the same distribution law also obeys

this law only in case the latter have normal distribution. No other distri-

bution law has this property /7]. Hence it follows -hat under the eondi-
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tions stated differentiation does not affect the distribution law only for random

functions of normal distribution.

The above reasoning is readily generalized for derivatives of higher order.

Let us find the law by which moments are transformed in differentiation. We

shall first consider the first-order moment of the derivative. Since in all cases

the operations of forming the average and of passage to the limit are interchangeable,

we can write:

d/ r.m /U+_O-/(O]_
M [_]= MLA,+0 at j--

_- lira M{f(t-4-M)]--Mlf(t)l dmi(t ) (2.33)
At -_ o _t : --di --- '

Consequently, the first-order moment also undergoes differentiation when the

random function is differentiated. It is obvious that the first-order moment of

the derivative of a stationary random function equals zero.

Generalizing the result obtained for the case of the first derivative, we have:

am/] dnm, (t) (2.34)34 _ _ d' _

Let us proceed to the second-order moment of a two-dimensional distribution

of the derivative. Since passing to the limit and averaging are interchangeable

we can write

M [d(U,) dr(I,)1_
[ dt I dtl J

tim 34L if (tl + atl)_-- f (tO " f (tz + M.)at2_--f(Q)]j. (2.35)

Afl-_0

Introducing the moment m2(tl, t2) we shall give expression (2.35) the form

r df(tl) df (It)]_
34L N d-_z J

I _ m e (t_+ all. II + All) -- m, (1,.#i 4- at,)lira --
._t, ,. o Atz | All
itu _ 0

rat(It + all, li) -- mll(t 1, ti)
(2.36)

At I J

The following final result is obtained from (2.36):

Jar(l,) dl (fft,)] = m,_._ (t,,#,)
M L -d_ dl 1 j dttdli (2.37)

Thus, the second-order moment of a random function is differentiated

twice when the function is differentiated once. Formula (2.37) is readily general-

ized for the case of a moment order v:

[dr(tO d/frO d/if.) ] d'rn, (#.. Q ..... t.)
M L--dll" --dll-" "" -_11_ J-- dtidt z..,dl,

(2.38)

In precisely the same way it is possible to obtain analogous results for higher

order derivatives, The moment of order v of the n-th derivative of a random

function is given by:

17



__ _ m_ [l t, t t..... t_)M [,r"/(t0 . _/(t 0 ,Z"/(t.)] d_" "

L at'_ a,_ ""--_-t', j o,_oq...o,':
(2.a9)

For a stationary randon functions differentiation with respect to time can

be replaced by differentiation with respect to the length of interval separating

time instants. As an example we shall consider the secon|-order moment of a

two-dimensional distribution of the derivative. The right-h,.nd side of expression

(2.37) can be thus represented for a stationary function

0trot( G, t.) oX 0,n2(_) o_o,,o,, (2.40,
where

= it,-- tt I.

Keeping in mind that the derivatives c):/Ot t and d:/dt 2 equal unity in their abso-

lute value and are of opposite sign, we obtain for a stationary random function:

[Of (t t ) df fit) ] d_'mt (Q
M L _tt dr,] -- d,_--" (2.41)

if we assume Ln (2.41) z = 0, then as could be expected we shall obtain a re-

suit coinciding with (2.32).

§8. integral Transformations of Random Fl,nctions

An integral transform of a random function tlt) is defined as

b

F_-f: (,) (. ,,.
i*

(2.42)

where 7 (t) is a determinate function.

We shall first explain the nature of the quantity F. Ve shall assume that a

determinate function _ (0 is given and the integration interval _a, b) is fixed. Then opera-

tion (2.42) gives a certain numerical value of F for every realization of the ran-

dom function f(t). This value varies in a random manner f:'om one realization to

another i.e., for given ?(f)and integration limits the integral transform (2.42)
is a random function of the realization number of the r_ndom function fit).

The probability function of the random variable F depends on the chosen func-

tion 7 (t) and the integration limits a and b.

For investigating the statistical properties of the random variable F we shall

break up the integration interval(a, b) into elements _t andgc over from the integral

(2.42) to the sum

N

F _--- _ f(I At) _?(1 At) _t. (2.43)

As mentioned in the preceding section, the distributi(n law of the sum

does not, in general, coincide with the distribution law _f the summands. There-

fore, in general, the distribution law of the random fun:tion is altered by an

integral transformation. Without examining this problen in general we shall

mention two important particular cases of it.

The quantity F is normally distributed if the random function fit) which

18



undergoes the integral transformation has normal distribution. The distribu-

tion of F is normal, for an arbitrary distribution law of the function f(t), any

-,alues arbitrarily near in time are mutually independent statistically. The last re-

sult is the consequence of the central limit theorem of the theory of probability.

Let us proceed to the elucidation of the laws of transformation of moments in

integral transformations of random functions. We shall begin with the first or-

(F)

der moment m 1 of the integral transform. Since the average of the sum

equals the sum of the averages of summands, we have from (2.43):

M

m_ _ ---- _. truer)(l At) _ q At) At (2.44)

orppassing to integral notation we obtain

b

= (0 (0at. (2.45)
u

Thus, in integral transformations of a random function, the first-order mo-

ment undergoes an analogous integral transformation. In the particular case of a

stationary random function its first-order moment does not depend upon time and

expression (2.45) becomes simplified thus:

b

dt. (2.46)

c1

Let us calculate the second-order moment of the integral transformation(2.42)

We have from (2.43):

F z = l At) _ (t =
i

N /¢

.---3£ _,/(tAt)l(jAt)_(tAt)v(1At)At,. (2.47)
i=l./= f

With respect to an individual term of the sum (2.47), the operation of

averaging gives:

m II(;At)/(jat)_(_A,)_(1at)(At)'l=

= .4,1[f{i At)f(j At)l $ (i At) ? (j AI)(At), =

= m_.t_(lat.] At)_(l_) _(iAt)(At)'. (2.48)

In view of this result we can write:

N M

M[ Fz} ----m(2t')-_ Z _ra[}( IAt, ]At)_ (i At) _ (/At)(At)z (2.49)

t=1$-!

or going over to the corresponding integral notation we obtain:

b b

¢J ¢$

Comparing this expression with (2.42) we notice that in the integral transforma-

tion (2.42), the second-order moment of a two-dimensional distribution of the random

function f(t) undergoes an analogous double integral transformation.
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One can readily convince oneself that it is necessary to apply a double integral

transformation to the correlation function for calculating the dispersion of the Inte-

gral transform F, i.e.,

b b

o_-- f f _'"(t,. ,_)+(,,)+(t,)d,,a,.,. {2.5,
it a

The generalization of the results (2.45) and (2.50) obtained above gives for

the moment of order v of the transform F the following expression:

b b

nl '(F) f -f m_'(t,.I.. ,,)+(t,)+(I_)
•.. ? (t,)dt I dr:.., dt,. (2.52)

Thus the calculation of the moments of order v of the random variable F is

carried out by means of a v-tuple integral transformation of the v-th order moment
of the v-dimensional distribution of the random function f(t.

§9. A Set of Several Integral Transformations of the fandom Function

We shall examine a set of m different integral traasformations of the

F, -_ f ](t) '_, it)dt,

same random function f(t):

iI

b

f/if) 7, (t) dr, (2.53)F..,

tl

..... b ......

f/(t) ,_,_ (t) at,F.,

11

where ?l, "_ ..... ;FM are some determinate functions.

The moments of each of the integral trantaforms(2.33) can be caleulatedwith

the aid of the relationships of the preceding section. The random quantities

F 1' F2 ...... , F m are in general statistically dependent an, l the m-order moment

of the m-dimensional distribution of these quantities is to te calculated.

Representing each of the integrals (2.53) in the form )f a sum of type (2.43)

we obtain:

FIF z... F_= _,,/(it_O_t(lt_)M X

X { _,/(tzht) 7_(t, At)at
li,=t "" ' i I -(Im_l'Tm(ImM)At

(2.54)B

or. in a different manner

N N H

t',/_,...p, = _, y_, ... y_, f(t,_)fq,at)..I(t_,At)X
tt_l is=l _im=t

X ?t (It M) ?z (Iz M) ... ?, (i,= At) (At) _. (2.55)
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Now, carrying out the operation of averaging analogous to that of (2.48_ and

reverting to integral notation, we have:

M IF,Y2...Y.I= m_ )=
b b

= f..=f m__(t,,t._.....t,,)_,(t,)_,(t,)...

• • • ?,_ (tin) dtl dl_ . .. dtm. (2.56)

The result obtained can be readily generalized for different integration limits

of (2.53). If these limits are correspondingly (al, bl) , (a2, b2) ..... (am, bin) ,one

can always choose such an interval (a, b) which contains the integration intervals of

all the integrals. Each of the integrals ot (2.53) can then be written as follows:

bk b

F_= f/(o '_ (odt = f/(t) +;(O"t, (2._7>
a k u

where for a k _ t _ bk we have

_, (t) -----_. (t), (2.58)

and fora_t<ak or b k<t_b we assume

T] (t) : 0. (2.59)

Now, writing the required result in the form of (2.56) we notice that in each

integration we can return to the original limits. Thus,

b, b, bm

M,r,F,... F.,=_= f f .. . f m_'(,,, ,_..... '.) X
o, _t t atn

]>_ _l (10 t_ (t2) . . . _m (/,,,) dtl dt_ . . . dt m. (2.60)

For any pair of transformations of (2.53)we can write by virtue of (2.60):

b_ b¢

a I aj

Consequently, to obtain the mixed moment of a set of integral transforms

it is necessary to apply successively all the transformations, defined for the

random function itself, to its corresponding moment.

The result obtained allows for an obvious generalization for the case when

each of the integral transformations of (2.53) refers to a specific random func-

tion and all the m random functions are statistically interdependent.

S10. Linear Transformations of Random Functions

The present section is concerned with the generalization of relationships

obtained in preceding sections to the case of arbitrary linear transformations of

random functions. These results are given in the works of V.S. Pugachev/8, 9/.

For the sake of clear and brief notation of the forthcoming theore ms we shall use

operational formalism. We shall denote an operation performed upon a variable or

function x as the product of this variable or function and the corresponding operator,

e.g., the operator A. Thus, the result of carrying out the operation A upon a vari-
able or function x is symbolically expressed as follows:
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y _--Ax. (2.62)

The operation A can vary greatly from case to case. It can, for instance,

determine a function y(x), i.e., indicate a rule according to which the value of the

variable y is found from the value of x. The integral transformations examined in

the preceding sections bear a different character, these transformations being

operators which determine the quantity F from the given function f(t). The transi-

tion from a function f(t) to another function q{t) carried out in a certain way can also

constitute such an operation. An example of such an opera_ion is differentiation.

Finally, it is not difficult to think of a great number of various operations inwhtch

a function y(t) is determined by the value of a variable x

From all these possible operations we shall pick out _inear operations, i.e.,

operations which have the property

A (a,x, + a,x, + ...+ a.x.) =
= a,Ax, + a_Ax, -t- • • • -Jr" aNAxm. (2.63)

Equation (2.63) signifies that the operation A upon a linear function of the

variables or functions Xl, x 2....... Xn is a linear functior of the results of this

operation upon each of these variables or functions. An o[erator which fulfils re-

lationship (2.63) is called linear.

We shall call an arbitrary linear operation carried o lt upon a random func-

tion a linear transformation of the random function. It s easy to see that dif-

ferentiation and integral transformations of the random ]unction are particular
cases of its linear transformation.

We shall examine an arbitrary linear transformation of the random func-

tion f(t):

F (Z) -_- A • ] (l). (2.64)

The argument may remain lnvariant (z = t) in the lin,_ar transformation

(2.64) as, e.g., in differentiation,and may change as was the case with the integral

transformation.

If the function undergoing a linear transformation hat normal distribution, the

outcome of the transformation is again a normally distributed variable or function.

For any other distribution law having finite mean and dispersion, the distribu-
tion law is changed by the linear transformation.

As to the operations of differentiation and integral tr msformatlon, we have

noted that the n-th moment of the image of f(t) under a linear transformation

A equals the n-fold iteration of A applied to the n-th m)ment of f(t):

rn'f,_(z,, z 2. . . z,) = A, A,, . . . A,, -_r)r_., , ",, _-l, tt, .-*,in). (2.65)

In the proof of relationship (2.65) with respect to botI these operations the

fact was used that the order in which the operation of diffel entiation(or integral

transformation) and the operation of averaging are carried out is immaterial

(the commutative property of these operations). Since t le operation of averag-

ing commutes with any linear operation, (2.65) applies to all linear transfor-

mations of a random function.

As an example we shall apply result (2.65) to a lineal differential equation of
n-th order
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Aty -_- Btx. (2.66)

where x = x(t) is a known random function, y = y(t)is an unknown random

function, A t and B t are linear differential operators which written out equal:

d n- t
Allan _-_n+an-tdl _ -_ '-. +O,-_t+O0, (2.67)

dm b dm-' ___ __._bt d (2.68)B, = b,,,_ -t- ,.-, dt,,,__-----r. • _ -{-bo

Equation (2.66) in which the functions x(t) and y(t) are random is called a

stochastic differential equation.

In accordance with the results given abovej a differential equation analogous

to (2.66) is valid for the first-order moments ml(x)(t ) and ml(Y)(t):

Atra] _) (t) = Btm] x) (t).

For mixed second-order moments we have:

or, in full:

equations (2.69),

(2.69)

At,At,m[ l'_ (t I, t.,) = [l¢,l_t,m _zx' (t,, t2), (2.70)

a. 0-_+ +% ".o--_, + +_o (q. t0=

= b,n-_---[- ... nt-bo b,_ d--t_--[- ... -k-b o mV_tt,, t,). (2.71)

The coefficients a 1 and b 1 in operators (2.67) and (2.68) and, consequently, in

(2.70) can be either constants or determinate time functions.

Thus for the moments of the first and second order we have obtained: in

the first case an ordinary differential equation, and in the second case a partial dif-

ferential equation. It is easy to set up in an analogous way differential equations
for moments of any order.

The results given in §§7 and 8 have been generalized above for the case of

arbitrarylinear transformations. The results given in §9 are also capable of an
analogous generalization.

Let a set of arbitrary linear transformations of a random function be given:

F, (Zi)_ Atf(t ), |

Fz(zz) = Azf(f)' t (2.72)
F,_(zm)= A,_/ (t).

Then we have by analogy with equation (2.60)

M IFIF2 . . . F_,l= m_ _= A.,Au, • ..

... A_, m_(t,, t 2..... lm). (2.73)

When all the transformations of (2.72) contain different random functions

which are statistically interdependent the result is written in an analogous way.
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ChapterThree

RANDOMFORCESUPONA LINEARSYSTEMWITHLUMPEDCONSTANTS

§ II. Statement of the Problem and Ter_ninology

The processes which occur in electrical,mechanics , and electromechanical

systems are described by similar differential equations. For any system of the

mentioned three types an equivalent system of any one of he two other types can be

given. This makes it possible to construct general meth( de of analysis of random

processes, equally applicable to any of the indicated c asses. Consequently,

we shall henceforth not go into the physical method of realizing a system sub-

ject to random action but shall examine the problem ir its most general for-

mulation.

The locus of points where random force is applied to the system is called

its input. Depending upon the nature of the random pzocess studied, the exter-

nal force can be of a different physical nature: an electrical voltage or current,

a mechanical force, torque etc. Similarly, the concept ¢ f theNlocus in the system n

should be made more exact in specific cases according t¢ the method of realization

of the system. Such are: a pair of terminals of an electric _1 system across which some

electric voltage is applied; a point executing translato_y motion in a me-

chanical system, at which point the mechanical force is applied; the axis of rotation-

al motion in a mechanical system when a torque is exerted on this axis.

The locus of points at which the response to the applied force is observed, is

called the output of the system. The response of the system may be, for

instance, a voltage or current in an electrical system, a displacement or angle of

rotation in a mechanical system.

The simplest problem is the investigation of a random process in a system

with one input and one output. It is assumed in this case that a sufficiently complete

characterization of the input applied to the system is ._vailable. The statistic-

al properties of the system's response are here the slbJect of study. It Isalso

important in some cases to study the statistical correlation between response and

external force. The question, what kind of statistical ch.Lracteristic of the external

force is sufficient, is solved with regard to the required exactitude of the statistical

properties of the system's response.

The general case is that of a system ofminputsancnoutputs. Of interest here

are not only the statistical properties of each of the res[ onses separately but also
the nature of the statistical correlation between the responses at different out-

puts as well as that between responses and external f,,rces.

The course of the random process in the system dc pends upon its state at

the initial time when input is applied, i.e., upon initial c,,nditions. The latter may

be specified uniquely, as is done in the theory of dynami,: processes, or statistic-

ally. Only in a particular (hut important) case, where on.y the asymptottcal be-

havior of the system for t --_ oo is studied, is the knowledge of initial conditions

superfluous.
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§ 12. The Method of Stochastic Differential Equations

Let us consider a random process in a system having one input and one out-

put. As well known, in a dynamic process the response y(t) of the linear system

with constant lumped parameters under external force x(t),satisfies an ordinary

differential equation with constant coefficients:

Aty (t) = B,x (t). (3.1)

Here A t and B t are linear differential operators:

d" tt"- ! d

A,=:,,,, _i_,+.._,3p-i- t- .. t-a, -_t+ ao.

d"' d" - ! d
B,:h= 7i_ + b_,., ai,,_-, -t- ... + b, _-bb o.

(3.2)

(3.3)

Equation (3.1) is equally applicable to the description of a random process in

the system. Then the external force x(t) is a known random function of time and

the problem consists in investigating of the statistical properties of the response

y(t) at the output ofthe system. Equation (3.1) then becomes a stochastic equation.

As had been already shown in § 10, a transformation of the distribution law

takes place generally in a linear system. Without discussing the problem of the

transformation of distribution laws in linear systems we shall turn now to the much

simpler problem of the transformation of the moments induced thereby.

Using the results of § I0 which deals with linear stochastic differential equations,

one can set up differential equations of the usual kind, corresponding to the stochas-

tic equation (3.1) and which describe the behavior of the moments ofthe response y_t).

For first-order moments we have the usual ordinary differential equa-

tion of n-th order:

At,n? _(t) = S,m_"_Ct). (3.4)

Let us examine some particular cases of equation (3.4). The simplest case

is the one in which the input is stationary, i.e., ml(x) = const, and the first

moment of the steady-state response, i.e., at t --_ o,% is required. Then the

operators A t and B t are simplified in the following manner:

A_--a o, Bt=b°' 13.5)

and the required first-order moment is:

b0 x
m?' = _,._ . (3.6)

If the input is stationary but the process leading to the attainment of a steady

state is of interest, one has to superpose upon the steady-state solution for

the first-order moment given by (3.6) a transient process described by the homo-

geneous differential equation:

A_m_(t) = 0. (3.7)
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The solution here obtained of equation (3.4) with co1_stant right-hand side

should satiBfy the initial conditions of the system.

If the first-order moment of the input varies in time in a known way and

it is required to obtain a full description of the behavior of the first- order moment of

the response, the most general form of equation (3.4) ghould be used. The time
variation of the first-order moment of the input may be the result of either

the nonstationary character of the random force itself, ¢ r of the superposition

of a regular input upon the random process. A mixed case, when both of the

mentioned factors appear, is also possible.

The solution of equation (3.4) can be effected by any of the known methods.

Since the random nature of the input does not introduce any new features into

the solution, we shall not dwell upon its technical aspect.

Let us turn to second-order moments. The second-order moments of the

input m_t xJ (tl,t2) is, in general, a function of two variables, as is the second-
order m_ment of the response of the system. It was shown in § 10 that the mention-

ed moments are connected by the differential equation (2.70) whose explicit form

is given by the expression (2.71). Thus:

At, At, m_) (t=, t=) _--_Bt,, B=,m(=a=)(t,, t.) (3.8)

where Atl , Bt_, and At2, Bt2 are linear differential operators of the form of (3.2)

and (3.3),where the variable t is replaced by t 1 and t 2 respectively.

Equation (3.8) can be solved in different ways, one of which is the following.

We introduce a new unknown function of the variables t 1 and t 2

s(tl, t=)= At,m[ln(tt, t=) (3.9)

and knowing the second-order moment of the input, w,_ find the function

z(tl, t=) --_-n _=_'"t_,m= t%, /=). (3.10)

Equation (3.8) is then transformed into the ordinary differential equation:

At, s (tl, t=)--_ Bt,z (tl. t=). (3.11)

In this equation the variable t. is the argument and t 2 - a parameter. The

arbitrary constants appearing in zts solution are functzons of the parameter t 2.

After solving equation (3.11) wefindthe second-or lermoment of the system's

response from the ordinary differential equation (3.9). In (3.9) the variable t 2 is

the argument and t 1 - a parameter.

Another possible method of solving equation (3.8) is the use of the Laplace

transform:

7(P)-= //(t) e-P' at. (3.12)

0

Assuming, for simplicity, zero initial conditions, [et us apply the Laplace

transformation with respect to the variable t 1 to both sic es of equation (3.8). We
obtain:

p,_t,m= (P,, t=)=Btj,Bt. = _',. 1=), (3.13)
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where

a,sp,-+-am_tp, -4- ... -4-a,p l-4-ao,

B_ = b_p_' + b._ ,p_' - _-4- ... -4- b,p_ -4-bo,

oo

m_ W)(Pl, t2) = f m[ _) (f,. t2) e-P. t, dt,,
0

oo

0

(3.14)

(3.15)

(3,16)

(3.17)

The application of a second Laplace transformation with respect to the variable

t 2 gives

(3.18)

where Ap2 and BP2 are expressed by formulas (3.14) and (3.15) with Pl replaced by

P2' and the twice-transformed moments have the form

_',=_(p,, pO= f ,2,=_(p,, tO ,- _t, a4 =
0

co

= f f .;='(t,. to.-,_,,+,_,.,#,,#t,,
0 0

_'*(p,,p2)= f_"(p,, tO ,-*',at,=
it

(3.19)

= f f ._."(t,, t,).-,_',+_'_dr,at,
0 0

(3.20)

Thus we obtain from (3.18) for the "double" transform of the required
moment:

_',"0,,, t,,)=-_-_-_ _=)(p,. p,). (3.21)
A_Ap,

The transition to the functionoforiginal variables is carried out for each

variable in turn and can be achieved by double application of the inverse trans-
formation or by other methods known from operational calculus /10].

Differential equations connecting moments of higher order can be set up and

solved in an analogous way.

The method of stochastic differential equations can also be applied to the

more general problem of a system with m inputs and n outputs. In this case, one
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has to consider a system of n stochastic differential equatiohs instead of one such

equation of the form (3.1). These equations are:

l=l j=l .... (3.22)

where A (ik) and (jk)
--t B t are linear differential operators, i _;nd j are number-labels of

the output andthe input, respectively, and k a running index enumerating the equations

of the system.

The systerfr1_ conventional differential equations for the first moments

N I

----_.o, -,_ (0. (3.231

corresponds to the system of stochastic differential equatio_ s (3.22).

By analogy with (3.8) we obtain the following system cf differential equations

for second-order moments:

I |a=l
(3.24)

= ,¢_, ok,. 2..... .>.c3.24>
Jls= I ]i= I

where, for brevity, the notation m2(t) = re(t) is introduced.

(x)

The moments mjl J2 appearing on the right-hand side )f equations (3.24)

become the autocorrelation ratios at the corresponding irputs if Jl = J2 = j"

If jl _J2 these moments are cross-correlations, i.e., they -_haracterlze the statistical

dependence between the forces at different inputs. An analcgous consideration applies

--(Y) appearing on the left-hand side of the same equations.
to the moments rail i2

§ 13. The Method of Impulse Characteristics

In a number of cases the statement of the problem of random acting on

a linear system is preceded by an analysis of its response:to a specific determinate

input. Standard inputs are the unit step function defined by the relationships

H(t) = 0 for t < 0, H(t) = 1 for t >0, and the unit impulse h(t) o" unit area, this [delta]

function being the time derivative of the unit step function. The response of the

system to a unit step function is called its transfer characteristic. Response

to a unit impulse still lacks a generally accepted term. We shall henceforth caU

this response the impulse characteristic of the system. A simple relation exists
between the transfer and impulse characteristics of the san e system, the second

being _e time derivative of the first.

We shall examine first a linear system with one input and one output. We

shall assume that the first n moments of the random applied input and the system's

impulse characteristics _ (t) are given. The first n moments of the response at the

output of the system are to be calculated.

Let the input x(t) be applied at the initial time t = 0. We shall assume,

for simplicity, that the energy of the system is zero at this moment. If
this condition is not fulfilled, a damped regular process which can be calculated

by known methods is superposed upon the investigated process.
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Wewishto findtheresponseto therandominputat the moment t 1. The
applied input can be considered as a succession of contiguous elementary
impulses of infinitely short duration (Figure 1). Their properties are similar to

s_

Figure 1. The applied input as a succession of contiguous
impulses

those of the unit impulse. The system's response at themoment t 1 to an infinites-

imal impulse which is at the distance t from the origin can be expressed as follows:

dy(ll)_---f;(,t I --t) x(t)dt.
(3.25)

By virtue of the linearity of the system, the resultant response of the system

to all the infinitesimal impulses Y(tl), contaired in the interval (0, tl), is the super-
position of the corresponding elemeStary responses of the form (3.25}. Thus:

Ii

y (tO _- j x (t) _ (tA-- t) at, (3. 26)

0

Expression (3.26) is an integral transformation of the random function

x(t). If the first n moments of the input x(t) are known, then the general equation

(2.52) of § 8 makes it possible to find the first n moments of the response y(t). In

particular, we have on the basis of (2.45) for the first moment Y(tl):

tl

m__) (t,) = f rn_">(t) f (t, -- t) at. (3.27)
o

The second moment [variance] of response y(t 1) is determined from for-
mula (2.50) as follows

t I t,

m_l y) (,.) ] J-,,,;"(,;.' -- ,;)-:(,,-- ,,> d,,.= t,)_(t, , , , (3.28)

o o

For finding the general form of the moments of the system's response we shall
proceed as follows. By analogy with (3.26), the response of the system at a time

instant t 2 can be written in the form:

y(t_)_f x(t)_(t,_t) dr. (3. 29)

0

The system_ response at any other time instants t3, t 4 ...... tn, can be ex-

pressed just as easily. Considering all these expressions as a set of n integral

transformations of the random function x(t) which are similar to (2.53), it is

not difficult to calculate, using expression (2.60), the n-th order moment of the

systemts response. In particular, we have for the second-order moment:

tl t,

// .....m_'_ (tl, ts)= m[X)(t',, t_)i(tt--t,)[(t2--tz)dt, dt,. (3.3o)
tl 0
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Thus, being given the moments of a random input and ttte system's impulse

characteristic, and employing the properties of integral traasformattorm, we can

calculate the corresponding moments of the systemWs response to the mentioned

random input.

The above-listed relationships for moments make it possible to carry out

calculations in the most general case when the response is nonstationary and

caused by a nonstationary external force. When only the values of the moments

of response at an infinitely long time after the input is switched on areofinterest,
the lower limits of all the integrals of this section should be taken as --oo. Then

the precise values of the upper limits become irrelevant. Only their correct order-

ing in time is important.

According to the remark make in § 8, the response of _ system to a normally

distributed applied input is also normally distributed. In the general case, an

alteration of the distribution law takes place in a linear system.

The problem of random action upon a system with one input and several out-

puts is solved in an equally simple manner. The responses of the system Yl ' Y2 _" "

• 'Yn at itsn outputs at time instantst 1, t2,...._t n are written by analogy with

(3.26) and (3.29) as follows:

t,

y, (tl) = f x(t)_, (t I -- t) tit,
t)

It

Y2 (tz) = f x (t) _2 (tz -- t) dt,

o (3.31)

t_

(t.) -= j x (t) _. (t. -- t) dr,Y.

u

where _l(t), [2(t),. .... In(t) are impulse characteristi,:s of the system with

respect to the corresponding outputs.

The moments of each response are determined by re ationehips of type (3.27)

and (3.30). The mixed moment for the system's n responses can be found if we

consider the expression (3.31) as a set of integral transi_)rmations of (2.53).

Then the application of formula (2.60) gives the following result:

t, tl tlq"

(U,,
". tt...... '")(t,, t. ..... to=f f ... f ,':'(,..,. ..... t.)x

0 0 o (3.32)
• • • t ?

)< [t(/i--ti)_t(t=--t_) •. • _,(t,--tn)dtl dr2 ... dr'.

Let us now consider a system with two inputs and two outputs. If convenient,

the results of its analysis can be generalized in a quite obvi)us way for the case

of m inputs and n outputs.

We now introduce the impulse characteristic [tj(t) o'? the system, where
the first subscript indicates the output and the second subs,:ript the input concerned.
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In our case the system is characterized by the four Impulse characteriztics

_ll(t), _.12(t), _21(t) and _,22(t).

We shall call the system I s response to random excitation applied at one of its

inputs its partial response Yij'Here' as above, the first and second subscripts refer to

the output and the input, respectively. The four partial responses of a system with
two inputs and outputs are written as follows:

y,,(f,)= f x,(o it,- odr,
0

tj

,,, (,,)= f xs(t)_12(t I -- t) dr,
0

t, (3.33)

Yn (tz) ---_f x,(,) odr,
o

t,

Yz= (t:) _ f x z (t) _':z (/z -- 0 dr.
0

The linearity of the system makes it possible to apply the principle of super-

position and to express the total responses of the system at both outputs thus:

y, (t,) --_ y,, (t,) "4- y,, (t,), (3.34)

y, (t,) = Y21 (tO "4- y-, (t,). (3.35)

Let us examine the total response of the syatem at the first output. The first

momentof response Yl(tl) equals the sum of first moments of the partial responses

Yll(tl)andYl2(tl). The latter are determined by equations of type (3.27). Hence,

tj tf

m(")(lt) = f m_z')(t)r,n(tt--t)dt-_ - f r4_zd (_) f.,I (t_--t) dr, (3.36)
0 u

For finding the second moment we shall examine the response Yl at both the

instants t 2 and tl:

Yt (t,) = y. (tO'_- y. (t,_,
(3.37)

where the partial responses Yll(t2) and Y12(t2) are determined by the first two

equations of (3.33) in which t 1 is replaced by t_ Taking into account equations
(3.34) and (3.37), the required second moment can be written as follows:

m(a_') (ti, tz) = M [y, (t,) y I (t2)| -_- Aq lY,, (tOy,, (tz)l -t- (3.38)

-_- hf lY_ (tO y. (t2)l + M lY. (tl)Ylt (/JI + M |Y_t (tt)Ylt (t_)l.

By generalizing the result (2.60) to the case where each integral transformation

(2.53) refers to a different function, we can express (3.38) in the following final

form:
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t,

y/ .....nit_J (t l, tz) = m2tz')"t.t, t_) F.tt (t, --t,) Ezt (t2 -- tz) dtt dtz+

o o

f, t_rr , ' ''Jr- m_z .... )(t;, tz)E.(tz--t2)Et2(t,--t,)dt,dtz-t-
J J
o o

t_ t_

+ f f ,.;_....'(t',,,,)'_,,(t,- t;)_,,(t,- tbdr;dr',+
o o

t s t,

// .....+ m_')(t_, t_)_t:(tt--t,);,:(t2--ta)dt, d:,,

0 U

(3.39)

(xt' x2)(t l, t 2) is the mixed moment of the applied inputs xl(t) and x2(t).where m 2

The calculation of moments of response at the second output is carried out in

the same way. Analogously, in view of equations (3.34) a-td (3.35), we have for

the mixed moment of responses Yl(tl) and Y2(t2):

m_ W'' _'_ (t I, t.) _--- M lY, (tOy, (tz)] = M lY. (t,) y21 (t,)l +

Jr- 34 lYI_ (t,)yzj (t2)] + .4'1 [Y,t (tt)Y22 (t2)l + 34 lYl:: (tl)Yz2(t.)],
(3.40)

or in an expanded form:

tt t,

m4t,,, ,off,, tz) = f f m;-,,(t:, t'z)_,1 fit--t;)Ez, (Q-4;) at: at;+
o 0

Is t_

Jr- f f m(z=.... )(t;, t;)_t=(t t --t;)E,, (tz--t;)dt; dt;-t-
o o

t_ t I

/f ......+ m_=:.... '(t_, t2)_t,(tt--ti)En(t,--t2)dt_dt,+

0 0

I t t.

+ f f ."'(,,,'/,) ;,,., -,,)_.._,_'- t,)'d,,'d,:. (3 ,l)
o o

The readily carried out generalization of expression: (3.39) and (3.41) for

the case of m inputs and n outputs gives the solution of the most general problem

of random input applied to a linear system.

If stationary random processes at the output of the s-.stem are analyzed, the

integration limits in (3.32), (3.36), (3.39), and (3.41) sho_Id be changed in accord-

ance with the remarks following formula (3.30).

§ 14. The Spectral Method

Unlike the preceding sections, where the obtained re 3ults applied equally to

stationary and nonstationary random processes, the random functions considered

in this section are stationary.

Let the stationary function f(t) be definedin the inter cal (0, T) of the time axis.

For simplicity, its first moment is assumed equal to zero This random function

can be represented by a Fourier series in the stated inter_al:

/(t) = _ (A, costo_t + Bksi, oJ_ t). (3.42)
k=t
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where

2xk
W k _ r ' (3.4s1

T

2 j" (3.44)Ak = Y l(x) cos _kx dx,
0

T
(3.451

Bk=_ f /(x)sin_,xdx.
u

The amplitudes A k and B k of the spectral components, obtained by the integral

transformations (3.44) and (3.45) of the random function f(x) are random quantit-

ties depending on the specific realization of f(x).

Using equation (2.50) let us find the dispersion OAk2of the amplitude Ak:

T T

°ak = _'_ COS wkX2 dx2 m=(xz--xt)cost%xt dx,. (3.46)
g 0

We shall transform the double integral appearing in (3.46) as follows. Let

us carry out the change of variables z = x 2 - Xl, in the inner integral.

Then T ._

_=.4 f ¢os=_x, dx, f mz(Z)¢OS"'k(X=--z)dz=
" X,- 7"

T .r._ I x,

[ O 2I--T Xl_ T

xcos,.,,,,,z+ f ,i.e.,_,,tx, f mz(z)stn_t,zdz .(3.47) (3.471
U X,- T

Each of the double integrals of (3.47) has to be transformed by changing the

order of integration. Considering that the function m2(z) is even we have for the
first integral:

'r _j

f ox2 f "2 _) COS '"kZ dz =

U X_ - T

t_ T T T= m2(z)cos.kzdz f dx_+ f ,nz(z)coso,kzdz f dxz=
- Y 0 0 ¢

T

==2f (T-- z) m2 (z) ¢o$ OkZ dz. (3.481
o

The two remaining double integrals are transformed in an analogous way. We
obtain the result:

J
0

}2r.k T m 2 (z) sin wkz dz . (3.49)
o
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Taking a sufficiently long observation time T, one can make the term z/T within

the brackets of the integrand of the first integral arbitrarily small. Similarly, for

all the spectrum components of frequencies _Jk_>=, where a is an arbit-

rarily small positive number, one can reduce at will the role of the second

integral of (3.49) by increasing the observation time, si:ace thereby the order

k of the spectrum component increases. Thus, for suffi :iently large T we have:

t _ 2Gk,
GA k

(3.50)

where a_ is the amplitude of the corresponding components of the cosine spectrum

of the rn'_ment m2(z), i.e. ,
T

a_=-f m_(z) ¢os_kz dz. (3.51)
o

Analogously one can find the dispersion of the amplitlde Bk determined by the

integral transformation (3.45). If the observation time T is sufficiently long, the
derivations give results coinciding with (3.50):

= 2ak.
_ak _ (3.52)

The spectral component of frequency 0_k of a rancom function can be
written as follows:

A k cos w_l q- Bk sin ,,# = Ck sin (wL_ _ _ ). (3.53)

where

A_

= A_ _- B_; _k = arctg _. (3.541

Since the average of the sum equals always the sum of the average values of
summands, we have on the basis of (3.50) and (3.52):

| 2 1

=Ck = oak + an_ = 4a_. (3.55)

Relationships (3.50), (3.52) and (3.55) make it possible to make the

following statement which is important for the spectral theory of random processes:

the spectrum of the mean squares of the amplitudes of a Fourier series, or, in

other words, the power spectrum of a stationary random function, coincides

(to within a constant factor) with the cosine spectrum of its second moment

or correlation function.

Consequently, by analogy with the spectral theory of determinate functions, the

conclusion can be drawn that a weakly correlated random 'unction has a broad

spectrum while a strongly correlated function has a narrow spectrum. This state-

ment will be given a clear physical interpretation in the fo]lowing.

Let us continue the investigation of the spectrum of ;t random function.
We shall first clarify the question of statistical dependence between the probability

amplitudes A k and B k. To this end we regard expressions (3.44) and (3.45)

as a set of two integral transformations of the random "unction f(t) and employ

relationship (2.61) to calculate their second-order mixec moment:
T T

I
M IAkB,} = f f -, (x,- x,  s.kx, s,.,,,.x...,dx. (3.56)

O O

Expression (3.56) can be transformed like (3.46). "Ihe result is:

r (3.57)4
M IAkBd = -- -f f •"T m= (z) sin ¢==z dz.

u
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In view of equations (3.50), (3.51), (3.52) and (3.57} we note that for
T--* co the correlation coefficient

plAk, B,I = ,HIAkB_} (3.58)
OAkOB k

tends to zero, i.e., for a sufficiently long observation time the random amplitudes

A k and B k can be considered as statistically independent.

The question of the statisticaldependenee between the amplitudes of spectral

components of different order, e.g., A k and Am,B k and Bin, A k and B m and,

finally, A m and B k, can be investigated in an analogous way. ForT--*oo allthese

amplitudes are statistically independent of each other. Thus, under this condition

a random function is resolved into statistically independent components.

We shall turn now to quantitative relationships in the spectrum of a stationary

random function. According to (3.55), the mean square of the instantaneous value

of the k-th spectral component can be written as:

a_ I z= _aCk = 2a k. (3.59)

Since the moment m2(z) is usually a damped function, the values of a k and
2

consequently of a. are very small for a long observation time T. This con-
K '

clusion follows directly from expression (3.51). However, for large T the spectral

lines lie very close together, and their number in a not too small frequency

band is quite considerable.

We shall select from the spectrum of the random function a narrow frequency

interval AF within which the spectrum can be considered as uniform. The number of

spectrum components in this interval will be AFT. Therefore, in view of (3.51)

and (3.59) we can express the mean square of the random function in the frequency

interval AF in the following way:

T

o2,p = o_AFT = 2aFra I = 4AF / m_ (z)cos w,z dz. (3.60)
0

where m k is the frequency of one of the spectrum components in the interval AF.

We shall introduce the spectral density F(m) of the random function, inter-

preting it as the mean square of the random function in a unit interval of the an-

gular frequency. From expression (3.60) we have:

Y_r 2 1"

F (_,) = -_ _-# : -_f m, (z) cos wkz dz (3.61 )
0

or, going over to the limit for T -+ oo0 we obtain:

F (_) = _/,n2 (z) cos ,,,zaz.
(3.62)

*p

Thus, the spectral density of a stationary random function is a Fourier

transform of its second moment. If the spectral density F(0_) of a stationary

random function is known, one can find its second moment by using the in-
verse transformation:

oo

m2(z)--f p(.)¢o,oz,.. (3.63)
u

The mean square of the random function is expressed by its spectral density thus:
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o _ = f F(-,) d,_. (3.64)
o

The results obtained, and in the first place the relat onships (3.62), (3,63)

and (3.64),make it possible to develop a spectral theory 4,f stationary random

processes.

Let us examine a system with one input and one outplt subjected to a station-

ary external force. It is required to find the steady-state response of the system.

As in the spectral theory of dynamic processes it is ass_med here that the complex

transfer ratio of the system is given:

K(j=) -= V(J-)
x (j=) ' (3.65)

where X(j_,}) is the complex amplitude of the harmonic applied input, Y(j{,)) is the

complex amplitude of the steady-state harmonic response )f the system,

Kngwing the spectral density Fin (.)) of the applie.J input or having calculated

it with the aid of expression (3.62), and being given the second moment of the response

one can calculate the spectral density Fout ( w ) of the system _s response

F ....(.)) -_ Fi. (_)l K(J_°)I t" (3.66)

If the spectral density of the system's response is kaown, expression (3.63)

makes it possible to calculate its second moment:

m(__) (Z) = f F .... (=) cos z= d= (3.87)

o

and, in particular, its mean square

(p/) f0u=m= (0)= Pout (,,)dw. (3.68)

(I

The above considerations have been elaborated tnde?endently of the results

of the preceding section obtained in working out the me hod of impulse character-

isttcs. Another approach is possible in which one starts from the relationships

of the preceding section and bases the spectral method aport them. We shall

examine this approach dealing, as yet, only with systems which have one input and

one output.

In the preceding section we obtained formula (3.3C) for the second moment

at the output of the system. Taking into account the statioaary nature of the processes

dealt with we shall rewrite this formula, taking -- c_ a;I the lower limit

I, t,

m_w}(t,, t.,). = m*=Z_(t;, t;)[(t I -- tz)E (t= -- tz)dt, d'tz. (3.69)
-oo --oo

We can obtain from expression (3.69) the above-shown basic relationships of

the spectral method. Before proving this we shall apply :urther transformations to

(3.69) using the property of stationarity of the process ,onsidered.

In stationary processes the second moments appeariag in (3,69) are even
t _ i

functions of the differences t2-tl, and t 2 t 1. Further, since only the relative

position of the time instants t 1 and t 2 is important, one can assume t 1 = 0

without loss of generality. Now, introducing the notation : = t 2 - t 1 = t 2 and chang-

' = _ =-- 0=, we can write (3.69) in the form:ing the integration variables: t 1 -- 01, t 2
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or_ if we set 8 I-02=0,

o /m_Ul(z)_ f _(I}z-J-z)dO z m(==)(O)_(0Jr-02)d0. (3.711

Let us change the order of integration in the double integral of (3.71). Then

we shall obtain:

m_(l')(z)= fm(z=)(O)dO f_(O-_-O,)_(O2-Jr-z)d02- }-

-co -_

- /÷fm'='(o)do _(o+ o,) Ue, + ,) do,
(3.72)

In the inner integral of the first terra (3.72) the integrand vanishes for H2<- 0.

Therefore the lower limit of this integral can be formally replaced by ----so.

A similar change is equally possible in the inner integral of the second term since

for 02<_ --z we have _(02 -_-Z)-_ 0. Consequently,

4.o_m_"(z)= _"(o)ao f _(O+O,)_O,+z)dO,+
-co -c_

/ Y÷ mT'_(o)ao _(o+o2)_(0 2 _-z)aO==
• -oo

+_ +oo

--L_ --tO

(3.73)

carrying out the substitution O=÷f; =_, in the inner integral of (3.73) we

obtain: +oo +co

,,,;,"(_)= j" ,,,;_"(0)d0 f _(,)_(, - 0+ z)d,;,=
-oo -¢o

4-oo

== f m_.=_CO)_p(0.,)a0.
-co

where

_p(0.z)= f _(_,)_(,_--o-b z)a._.
-,oo

We have now completed the preliminary transformation of expression

(3.69) and proceed to the basic exposition of the spectral method.

(3.74)

(3.75)

As well-known /11/ the complex transfer ratio of the linear system and its

impulse characteristic are connected by the direct and inverse Fourier transforms:

400

K(J=)= f [(t)e-_" at, (3.76)

÷clo

I f t((j,,Oe-_rd=. (3.771_ff) = N

Furthermore, the following relation is knows in the theory of Fourier transforms:
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400 ÷CO

f f
-oo -_¢I

(3.78)

where f is the spectral density of the function f(t):

÷(XD

f.= f l(t),-J-,dt. (3.79)
--Up

Making use of these results we can rewrite equation (3.75) thus:

!
_(O, z)=-_ f IK(J=)l=+J'c'-_d=. (3.80)

Substituting this expression for ? (_, Z) in (3.74) and changing the order of

integration we obtain:
4.0el ÷00

,,,i,,(,)= f ,;"(8)dO. f fKU.)l,,,',-,-'a.=
-= -0= (3.81)

+O= +¢D

I 1
f IK(j=)l,,,,',=d..-;f

-co -o8

second moment m2(X)(0) of the applied inpu _. is even, then, takingSince the

into account (3.62), the inner integral of expression (3.81) can be transformed in

the following way: +=

' f m(=J(O) t-'f'ldO=_ - fmt'm (O) cos we dS,
(3.82)

-co o

The integral of (3.82) is an even function of the frequency ._. Similarly, the

square of the modulus of the system's transfer ratio I K (j(,) t 2 is an even function of

the frequency. This makes it possible to write expression C:.81) in the following
final form:

T 2 _m,=) (0) cos ,,,0 d_.rn_a_)(z) = IK(j=)l=cos_ozd=. -_ j =
(3.83)

o o

This result is entirely equivalent to the one obtained e_rlier for the relation-

ships of the spectral method. In fact, comparing integral C .82) with expression

(3.62) we notice that the integral gives the spectral density of the applied input.
Further, taking into account expression (3.66) we see that (3.83) has the same

meaning as the earlier result (3.67).

The difference between the second way of establishing he spectral method and

the first one consists in the fact that in the first one the concept of the spectrum

of the random function itself was introduced while in the second one appears the
spectrum of only its correlation ratio. Therefore, thesecon,ione leads us more

quickly to the goal. However, in some cases the spectrum of the random func-
tion is a very useful concept.

Let us proceed now to linear systems with several inpt ts and outputs. For

the sake of simplicity we shall examine here, as hitherto, systems with two inputs

and two outputs. The generalization of the spectral method which we have

in mind can be achieved by any one of the two ways given abo/e. Here we give pre-
ference to the second one. This is not due to basic consider_ tions but is explained

by the desire to shorten the calculations necessary for obtair ing the final results.

Our system will be characterized by four transfer xatios:
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IKzI(J'">i,l%(J'">l,IZ21<J,,,)Iandl%(J_>i,and=I.obythefourphaBe shifts:
_ll((,d, CPl2(O+), ¢P21(_0) and q_22(_,_),where the first and second subscripts refer to

the output and the input, respectively.

In the preceding section we obtained expression (3.39) for the second mo-

ment at the first output. Taking into account the stationary nature of the processes

considered, this expression can be written as follows:

@m @_

m?,'(t,,t,)= f J m_',_(tl,t;)_,,(t,--t;)_,,(t,-t;)dtldt;+

e¢ t,

+ f f ,n_'"x"(t;. t'z)Ezz(tz--t;)Ezi(t,--ti)dt:dt;-t-
. _ -oa

I v t,

+ f f_ ....'(t; " " (,,-" " ", tz) dt, dtz "-4-h) _z, (tt _ ti) _tz

-OD --ol

t; tit

4 f f m;-.,,,;. t'.>t,,¢,,-,1>_,,<,,- t;)at',at:. {3.a4>
_zc -oo

The first and the fourth integrals of (3.84) have the same form as the integral

of (3.69). Therefore, by analogy with (3.83) one can write:

• dtt dtz =

o o

t t t,

f f ,,,',:"(,;.,,>_,,(,," - ,,)_,:(,.-'' ,,>d,,' ,,;=
-oo -or)

= lgz2 (J') ]' COS,.Z alto. -_- j mz (0) Cos w_ dO.
u u

The integral of (3.85) gives the second moment of the response that would have

taken place ifexternalforce were applied at the first input only. Integral (3. titi)

is aresponse analogous to the characteristic for external force applied at the

second input only.

We shall proceed to the transformation of the second integral of (3.84). Unlike

equation (3.69), where the function m; x)t (t_1, tl2) was an even function of the

difference tl 2 - t_lo here the function m2(Xl' x2) (tf 1 - t_) although being a function of

the difference t2-t' 1 (by virtue of the stationary nature of the process), is not in

general an even function. Since in the course of the transformations which led us
from equation (3.69) to (3.74) and (3.75) we had not assumed that the function is

even, we need not repeat the above transformation and we can write directly:

t _ • • •f f,,,:-....,(,1.,,)_,,¢,,-,;>.,,(,,- ,,>dr,dt,_-
-o_ -oo

4-00

= f .,#. _,<s>+(0.,>do. 13.87)
-¢o
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wh('rL" ÷_

?(0. Z)= f h,@)ht(_--e-Fz)d_. (3.88)
-oo

For the further transformation of expressions (3.87) tnd (3.88) we shall use

th- relationship ÷== +oo

f ' f I:..,,-. ,.,l(t) g (t + ,) at ----_- (3.89)
-_o -,at:.

which is known from the theory of Fourier integrals, and in which f. and g. are

the spectral densities of the functions f(t) and g(t) and in which the asterisk

indicates the complex conjugate.

Since, according to expression (3.76), the system's transfer ratio is given by

the Fourier transform of its impulse characteristic and tn view of equation

(3.89), we can rewrite equation (3.88) as follows:
4-0o

_p(_), z) = K=a(l*o) K u (j_) e_" ('-g_ ,tw. 13.90)

-oo
We now substitute the obtained value of _(0, z) in (_.87) and, changing the

order of integration,we have:

|1. tL

i/ ., ....m_'" x_ (t{, tz) -tz (t= --t=) tz= (tl -- tl) dt= dtz = (3.91)

-oJ -Jo
÷so +oo

-'/ f-- g K;, (y=) K,, (j=) g" a=. _ rag' ''_ (0) ,-_"ae.
-_ -co

An analogous form can he given to the third integral (f expression (3.84):
t= I=

f f =;-,,"_'(,:,,,_,,(,, .... (3.92'' __tl) E,_(tz__tzjdt, d;2=

, f " - f=:.,,.,,(o),-,-',,.= 2 Ku(j_) g,z(j=)eJ, d=. II¢

Now, using the results of (3.85), (3.86), (3.91) and (3.92) we rewrite

(3.84) as follows:

f (0),:os dG Jrm_'ua(z) ---- IK'= (/=) [=¢°s=zd= . -7 nt (z-v=) w_

o o

/ -+ 1K,,(/=_l,¢o,==e=._ f =':.'(0)=o,,o0_0+
u O

4-00

' f "-'k g I/q= (]_o)K,=(J=)-_- K_I(J¢')" Kl=(j=llel"d=X
-oo

+oo

I
f m_ =," _,)(O)e-._'=dO. (3.93)×"Z

1.,et us analyze the equation obtained. Comparing tl _e first integral of (3.93)

with equation (3, 83) we conclude that this integral gives he second moment of

the response whiehwould take place if the external force w,_re applied at the first

input only. The internal integral of the first term multipli_ d by 2/7:, gives, as

follows from (3.62), the spectral density of external forc_ at the first input:

so

2 /" {z,) (3.94)
--zjmz (O)cos=fJdO---- F=,(=).

0
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The second integral expresses the second moment of the response under
external force at the second input only. Similarly to (3.94) we have:

co

2 fmV"(O)cos_0a0 = F_,(_). (a 9s)1=

The third integral is th°e resuit of the statistical dependence between the ex-

tecnalforceatthetwo inputs. The inner integral of the thirdtermwithafactorofl/n

,f-_ m(zZ.... )(O)e-J_° dO -_ F,e,.,,(jto) (3.96)

expresses the spectral density of the mixed moment m2(Xl' x2) (0). We shall call

this spectral density the mutual spectral density of the external forces. Since in
general the mixed moment is not an even function, transformation (3.82) is not

applicable here and the mutual spectral density itself is complex.

Taking the aforesaid into account, we can write equation (3.93) in the

following more compact form:

m_ s'' (2) = f '/(,, (j,,,)12 f'.r, ('")COS .,2 dr, + (3.97)
u

oo

-_L f [ K,=, (j,,)12 F=. (,,) cos _z dz -_-

o
÷so

+ } f K:,(jo)+K:,(jo,
An analogous relationship is valid for the second moment of response at the

second output: co

m_v') (z) = f I Kz, (jw) t2 F.r I (,,,) cos ,,,z dto -{--
o

so

+ / j K2_(j,:,) 12F=, (_) co,, ,,,zd,,,+

I f . * . t,-F _" I Kzt (j,o) K22 (Ju,)+Kzt (rio) Kz2 (.i'_)1 f_,x, (j_) • J'' do. (3.98)

To calculate the mixed moment of response at both outputs of the system we

use equation (3.41) of the preceding section which assumes the form

m_""v')(t. G)-=
t_ t_

f f_':'(':.' ...._- t_) "_tt (It -- tt) _t (tz -- t..,) dtt dt2 +

tt t,

f¢ , ,. ,,,-Jr- m_=,, x,)(t,, t_) _tz (t, --tt) _'_t (tz --- f2) dtt dl_ -}-
d d

-- t) -co

tt t,

y/ ....-I- mg"x')(t',, t;)5tt(tt---tt)_2"2(t2--t2)'lt, dt2q-

-oo -co

t_ tt

÷ f f,'y(,:' (,, ,,)_..(,,tz) _t2 ' • ' ', -- --12)dll dt2. (3.99)

--cIJ --C_

for stationary processes.

The transformation of analogous integrals had been carried out in the
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foregoing. Therefore, without writing out the corresponding derivations, we shad

give immediately their final relult:

÷oo

tff(1t#,'

-_ K',_(j.,} K2._(J,,,_f.,(,,,)

% {g;, (jL,,) g_2 (j_)"at" K;z (j.) g;, { j,,,)} F=, r., (J,,,)l ,,>",t.,.

(3.100)

It is understood here that the order of the two time instants is such that t 2 > t 1,

It is easy to see that the square brackets in the integr_nd of (3.100) contain

the mutual spectral density of response at both outputs.

Thus. Equations (3.97)° (3.98) and (3.100) obviously determine the statistical

properties of the responses at both outputs of the system.

§ 15. An RC Circuit excited by a Stationary Fluctuating Voltage

In this section we are concerned with application of methods expounded in the

preceding sections to a simple particular problem. This problem is given here as

a clear physical ilulstration, being at the same time the poiqt of departure for some

generalizations to be given later.

A

.,(t)

Figure 2. An RC Circuit excited by a fluctuating voltage

Let an electric fluctuating voltage Uin(t) be applied at :he input across the RC

circuit (Figure 2) at the moment t = 0. It is assumed that t.hisvoltage is a station-

ary random function of time, whereby its d.c. component (first-order moment)

equals zero, and the second-order moment, which in this c tse coincides with the

correlation ratio is

lq(in) I_ _ e-_ I I [,-t_ I_'l, tz) :Oin (3.101)

2 iS the square ol the effective value ofIt is easy to see that the quantity sin

the input voltage. The initial charge on the capacitor is assumed equal to zero.

It is necessary to find the steady-state law of the second moment of output

voltage. This will make it possible, in particular, to find ;he law of the variation

of the effective fluctuating voltage at the output.

We shall use the method of stochastic differential equations for the solution

of this problem. The stochastic differential equation which describes the investigated

random process has the form

dU out (D (3.102)
art -+ =uoo, (t) = au,. (t),

where a = I/RC

Thus, the operators A t and B t of equation (3.1) are it.this case expressed by
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d
A# = _-i "i- =; Bt==. (3. 103)

Therefore, the differential equation (3, 6) reads in this particular case

= 0 + ,,,.,.,= ,.,
To represent the required second moment in the form of (3.21) it is necessary

to fled the double transform of the second moment of the input, determined

by expression (3. 101). Let us calculate its Laplace transform to the

variable tl:

--(in}m= (Pt, t=) -_- m[ in) (t,, t=) e-P't'dt= :

o

_in e-P (t.-t,) e-P,t,dt, Jr- e-P (t, -t,1 e -p,t, dt I

0 ¢,

_2in

=-__ p,_{2[_e-,,'.--(_ _-/,,)e-'. }. (3. lo5)

Now we shall transform the obtained expression with respect to the vari-

able t2:

U

= _ 2p e-_P,+P,_ f, dt 2 _(p + p,) e-(_, 'BI e_lt., -_

U 0

2_ +Pl -_P=
Out

(Pt + P)(P-. _){Pl _Pz _" (3. 106)

The transition from the operators At and B t to their transforms gives,
according to (3. 13) and (3.15):

Ap = p-_-"; B_---=. (3.107)

Therefore, the required double transform of the second moment which has in

general the form of (3.21) is obtained in this case as

=(o.t¿ 2_ + Pl -I- p._m= (!,,. p=): ==_.
(pl_f_=)(pl_l__)(pl_l_p_(p=_t_=)(p _}_p). (3,108)

The inverse double transition to the original, which can easily be carried out

with the aid of a table of operational relations, leads to the required result:

m_°_t) it,. t=)= =.,_ill .. ,,e-Plt.-I.I--fJl-',t.-t,l-t -=

-}-_1) e-. (t, ÷t,)- = le-_Pt,+ .t,) 4- e-(",+ _t,)l/. (3. 109)4-(=
J

Let us examine the obtained expression. As should have been expected, it

is symmetric with respect to the variables t 1 and t 2 and satisfies the initial

condition m2(°ut) (0,0) = 0. The second moment of the response depends, not onlyupon

the absolute value of the difference It 2 -- tll, but also upon the disposition of both

time instants with respect to the time the input is switched on. Thus, there

is a nonstationary random process at the output of the circuit. The steady-state
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lawof the mean square of the output voltage is obtained by setting in (3.109)

t I = t 2 = t:

• ,{i e-'t }.... (t) -- _+ _ _in _ (:te-Ot--_e -tt) . (3. 110)

If t 1 ---* _: and t 2 --* c_while the absolute value of T.heir difference It 2 - tll
remains finite, the second moment of the output voltage tends to its steady value:

(°ut)(tt. t2) a2--£-k--_[ae [_!t,-t,J--_e-* f,-t,l[. (3.111)m2 st =

Now the second moment of the responsedepends on y upon the relative position

of the time instants t 1 and t 2, i.e. , in the limit a static_nary random process is

obtained.

Assuming in (3.110) t ---*oo or ln (3.111) ]t2-tll = 0, we findthe mean

square of the fluctuation steady-state voltage at the output of the circuit:

I -_ _,_ _ (3. 112)
_ou_ , + _.

The normalized steady-state correlation ratio will be:

"_°_tt)fie it) _e-._It.-t,t--_,-'l t,-',' _3.113)

out

Thus, the necessary quantitative relations have be m obtained. Let us analyze
them.

We shall call correlation period the time interval within which there is a signi-

ficant statistical dependence between the values of the random function (voltage in our

case). As a criterion of this dependence one may take p ( I t 1 - t21 ) >I 0.1, for instance.

Furthermore, let us call the time in which the voltage ot the capacitor is reduced to

10% of its initial value, the discharge period of the capLcitor. Then equating the

correlation period of the input voltage to the discharge period of the capacitor

corresponds to equating a and _.

Let _ _ a, i.e. , the correlation period of the app led input greatly exceeds
the discharge period of the capacitor. In other words, tie speed at _hichtherandom

process occurs in the circuit is much greater than the rf.ean rate of change of the

input voltage. In this case we obtain from (3. 112) and (_. 113):

no_,t _i.; Po_t fit, tz) _e°Ot t,-t,t (3 114)

Equation (3. 114) signifies that under the indicated conditions the statistical

properties of the output voltage coincide with these of th- input voltage. The reason

for this lies in the fact for _ _..<_ _ the voltage at the c utput of the circuit

manages to follow the variations in the input.

We shall assume now that _ _<_ _, which correspor ds to a long discharge period

of the capcitor as compared with the correlation peri_,d of the input voltage.

Then equation (3.113) reduces to

po,,, (t,, it) = e-,I t,-t, l,
(3. 115)
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i. e. , the degree of statistical dependenceatthe output does not depend upon such

dependece at the input, but is determined exclusively by the parameters of the
circuit.

It is noteworthy that with weak correlation of the applied input, (_ <_,_ _ },

the equation of the correlation ratio of the output voltage has the same form as

the equation of the discharge of a capacitor through a resistance I. e. , the equation

of the specific transient process of the system. This correspondence is not accidental.

The reason for it will be explained in the next section.

Let us note that when speaking of a weak or strong correlation of the

input we should not consider its correlation period unrelated, but we ought to

compare the correlation period with the duration of the specific transient pro-

cess of the system to which the excitation is applied.

Figure 3. Graph of the second moment of the voltage across the input of an
RC circuit

Let us explain yet another characteristic property of a weakly correlated in-

put. For this we shall turn to expression (3.112) which, for _ can be written

thus: z
I Oin

_out --_ _ -'_--" (3. 116)

For a clear interpretation of the relation obtained let us compute the area S

hounded by the graph of the input moment (3.101) and the abscissa (Figure 3).

We shall put the_elt2-tll = x. Then

f °'2 p, d.c : ,_ "_ (3.1171
S --_ 2 :i.e- - _-.

taking the obtained result into account we shall rewrite expression (3.116) in the

following way:

°' ½out : _S. (3. 118)

Thus, the mean square of the system's response to a weakly correlated

input is determined by the area S, which characterizes this input and by the para-

meters of the system. The present result was obtained for the specific system

the particular form (3. 101) of the function m2(in) (tl,t2). It is shown in thewith

following section that this statement is of general application.

All the results listed above have been obtained by the method of stochastic

differential equations. Let us solve the same problem by the method of impulse

characteristics. To make derivations brief, we shall compute the second moment

of theresponse onlyin the stationary regime. For this we shall use expression

(3.30) in which the lower integration limits are taken equal to -- co.

We shall assume for the sake of definiteness t 1 _ t 2 and we shall calculate
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theinner integral of expression (3.30) with the above-ment,oned change of the
lower limit. The impulse charaeterigtic of an RC circuit s, as well known, given

by:

E(t) = _-_. (3. 119)

Taking into account relation (3.101) for the second momentof the applied input

|t

f • • tm_=) (t ;, tz) E(t, -- t,) dt, =

1
_--_ 2"Jin

-co

-_"_-"2_ .-°(',-h _ de, =

= =_"{";=--IB-p'_e_ -- _'_e-"', e'"'}.

we have:

(3.120)

According to (3.30),the result obtained should be multiplied by =t-.(t 1-t_)

and integrated with respect to t 2 between the limits -- co an _ t 2. Carrying out the

said calculations we finally obtain:

(o_t) a_ qt - t,) I
niz_ (It, tz)_--a-T-_-___[ae-ll(r'-t')--_e-" ' (3. 121)

i.e. , an expression which coincides with (3. 111).

Let us carry out the same calculations by the spect_-al method.

(3.62) we shall find the spectraldensity of the applies inplt

U

The transfer ratio of the circuit equals:

I

IK(Jw)l= "¢'1+.,mc_= ¥"_--_'_'

Therefore the spectral density of its response is,

F.... (_) = _ _,, (._+ ,,,,)(_,+ _,) •

Now, using expression (3.63) we find the second moment of the steady-state

response of the circuit:

2 _ cos z_m(z°"*>(z)= _'. (._+ ._)(l_t+ _,)
4)

= _ (=,-_,-- pe-"). (3.125)

First, using

(3. 122)

(3. 123)

according to (3.66):

(3. 124)

This result had been obtained earlier by the method of stochastic differential

equations (formula 3. lll) and by the method of impulse cmracteristics (formula

3. 121).
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§ 16. Uncorrelated Input

In many problems of the theory of random processes the input is weakly

correlated. In this case it is both possible and expedient to idealize the pro-

perties of the input. This idealization leads to the concept of Z-correlated or
uncorrelated input.

We shall use the method of impulse characteristics to carry out the

mentioned idealization. We shall turn to the general expression (3.30) and subject

it to a transformation for the case of weak correlation of the applied input. Let

us examine the inner integral of this expression, where we set t2 _ tI .

Weak correlation of the input signifies that the major part of the area S, bounded by

the graph of second moment m2 (x) (t,1,t_2)and the abscissa, spans a narrow inter-

val of the values of t_ which contains the time moment t_. Thenarrownessofthe

mentioned interval should be understood in the sense, that the variation of the

function _ (tl-t_) in this interval is insignificant, and itcan be replaced in this

interval by its value at the point t_, i.e. , by the constant _ (tl-t_). This makes

it possible to replace the inner integral by the following approximate expression:

t, f,

i , ,fnz_z')(t_, t,)_(t,--t_)dt_ _ _ (t,---t,) nz_z)(t't, t,)" dt,' ---_ (3. 126)

0 0

= S_(t, -- t_),

where the area S is in the general case a function of t_. The weaker the
correlation of the input, the more exact is the estimate (3.126). Formula(3.30)
now assumes the form

t,

I i • •m(_)(t,, tz).._ S(tz)_(t,--tz)_(t_--tz)dt.,..
(3. 127)

0

The result obtained confirms the statement of the preceding section (follow-

ing formula (3. 118))that, when a weakly correlated random input acts upon a

system, the area S fully characterizes the random process.

Since the form of the boundary of S is irrelevant under the conditions consider-

ed, the actual moment m2(X)(t _ ,t_) may be replaced by an impulse function of

equal area, i.e. ,

m_*' (t_, ,;) = S _(t_ -- t_), (3. 128)

! i
where _ (t2-t I) is a unit impulse.

An analogous situation exists in the theory of determinate transient processes.
If the system is acted upon by an impulse the duration of which is much shorter

than the duration of transient processes in the system, such an impulse may be
replaced by an impulse function, i.e., an impulse equal in area to the actual one,

having infinitely small width and infinite height.

An input whose second moment is of the form of (3.128) is called _-correl-

ated or uncorrelated. The estimate (3.127} becomes exact for such an input:

t,

.;,,_- f ' , , •S (tz) _ (t t _ tz) _ (tz -- tz) dtz. (3.129)

0

In the particular case when the applied input is stationary we have:
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m_,U_(t,, t,) = s f E(t, -- t;>_(t, -- tb dt_. (3.13o)
0

If the steady-state second moment of the system's: response is sought, the

lower limit of the integral of (3. 130) should he replaced b:" --_, i.e. ,
&

m(,m(tL, t2) = S f _(t,- tz) _(t z--' t.0' dtz.' (3.131)
--oo

The last equation can be presented in a form which is more convenient for

computations. We shall set tl-t2 = • and introduce a new integration variable

x= t2-t' 2 . Then we obtain: oo

mg"(_)=s f _(x) _(x+_) dx
o (3. 132)

The last equation gives the connection between the."steady-state second

moment of response and the impulse characteristic of the system if the input

is uncorrelated.

Other relationships of the method of impulse characteristics are easily trans-

formed in a way analogous to the above.

Let us see how the general relations of the method (_f stochastic differential

equations become simplified for uncorrelated input. Fcr this kind of input its
moment in differential equation (3.8) which connects the second moments of

output and input should be replaced by the value of the moment from (3.128).

In accordance with this, let us calculate the double transform of the second

moment of the input, entering in expression (3.21). W__ shall assume here the

input as stationary. The transformation with respect t) the variable t 1 gives:
co

m[_; (Pl, tz) -_- f s 8 (,.- ,,).-.,,,dl I -_- S{ - p,t,. (3. 133)
U

A second transformation with respect to the variable , 2 leads to the following

simple result S

_I_) (Pl, P'_) = Pt +P_ " (3. 134)

Let us note that this result could have been obtained also from (3. 106), in

view of (3. 117) and assuming _ --, oo.

The above considerations can be obviously extended to other relationships of

the method of stochastic differential equations.

Let us find the spectral density of uncorrelated input. If the correlation

period of the input is much shorter than the period of the frequency at which

the spectral density is to be computed, then one can a_sume cos,uz= I. in

the calculation of integral (3.62) and then:

F(.,)== m,(z)dz----- _ ,
o (3. 135)

where the quantity S has the same meaning as before.

In the ideal case when the correlation period equals zero, expression (3. 135)

is correct at all frequencies from zero to Infinity. For a 3mall but finite correlation

period it is valid only at sufficiently low frequencies whi¢h correspond to periods

much longer than the correlation period.

Equation (3.135) shows that a stationary uncorre]ated input has a uniform

spectrum in the entire frequency range from zero to infirAty.
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An uncorrelated input has an infinite mean square a z , as follows directly

from equation (3.128) when we take there t'1 = tl 2. Th_name result can be

obtained from (3.117) by assuming _--_oo at S= const. Consequently,

such an input has infinite energy. This result is the consequence of the assumed

idealization of the actual properties of the input.

_'t,

Figure 4. Graph of the second moment of an uncorrelated voltage input

We shall pay attention to the fact that an uncorrelated input can cause a
finite response of the system only ff it has an infinite mean square, i.e., a finite area

S. To explain this we shall introduce the concept of specific energy of the input,

interpreting it as the energy developed in a unit active resistance. If we now

consider the input succession of infinitesimal impulses immediately following

on each other, the heights of the impulses being considered as uncorrelated, then

the graph of the second moment will be of the form shown in Figure 4. and the area

S will represent the mean specific energy of the individual elementary impulses.

Each elementary impulse communicates a certain energy store to the system.

Storage of energy takes place in the system only when the impulses applied to it
are ordered to some extent, as is the case with determinate as well as with correlated

random actions. Then, at infinitely small specific energy of the impulses (finite
o 2 ) their superposition produces a finite effect at the output. In the absence of

in
correlation no energy can be stored m the system andfinite response can be eli-

cited only in the case when the specific energy of each elementary impulse is infinite, i. e.,
|

ain_ co.

Let us explain the connection between the form of the correlation ratio at the

systemls output, under uncorrelated input, and the character of the system's

specific transient process. For this we shall turn to the RC circuit examined
in the preceding section. Let there occur a stationary random process caused

by an uncorrelated fluctuating voltage in the circuit whilst the voltage across the capacitor

equals u 1 at the moment t 1 (Figure 5). The voltage u 2 across onthe capacitor at the

moment t 2 can be regarded as the result of the superpositton of two processes:

Figure 5. The character of the voltage at the output of
an RC circuit under fluctuating input
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i) the discharge of the capacitor through the resistance ant input source during

the time t2-t I (determinate process), and 2) the simultaneou._ charging of the capacitor

by the input fluctuating voltage (random process).

Th_Js:

"z = u_e-'¢t'-l')"{-Ura,d. (3. 136)

NOW, multiplying both sides of (3. 136) by uI and taking the average we obtain:

M lu,u,I = M [._]e -'_-''_ + M lu,u,_dl. (3.13v)

The left-hand side of (3. 137) represents the second n:oment of output voltage

m2(°ut) (t 1, t2). We further have:

MIn;]: (3.138)
and

M [UlUrandl = 0. (3. 139)

The latter relation results from the fact that at ur, correlated input there

is no correlatlon between the voltage Urand resulting from nput fluctuations over the

period t2-t I and the voltage u, caused by these fluctuations at the moment t I.

Taking these considerations into account, one write equation (3. 137) in the

following form:

_{$out) 2(tz, tz)==ao_t e-a(t'-t'), (3. 140)

whence we have for the normalized correlation ratio of the _utput voltage

Pout (tl, It) _ m_°ut) (tt' ill) --e -,(1"-E') (t z > tl), (3. 141)
OIout

i.e. , an expression which coincides with (3.115).

It follows from the given results that under an unc)rrelated input, the
correlation at the output of the system results from some measure of resi-

dual response to the earlier applied input. This residua, response decreases

according to a law which coincides with that of the system' s s )ecific transient process.

To conclude this section we would like to remark hat in §8 a random

function was mentioned, the arbitrarily near-in-time valves of which were

statistically independent. Such a function is uncorrelated and all the considerations

given above are applicable to it. However, if the second re)merit has the form of

(3. 128) this is not yet sufficient for inferring that there is z o statistical dependence.

Such an inference is valid only for a normally distributed ft nctton.

§ 17. The Problem of Two RC Circuits with a (:ommon Input

The aim of this and the following section is to glw an illustration of the

investigation of random processes in linear systems by me" hods given in this chapter

as applied to systems with several inputs and outputs. We shall now examine

the following problem. Two RC circuits are given in (Figure 6) with the para-

meters :
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I l
=t ----"_"_. _ _ _----'_- • (3. 142)

,,t.(O

Figure 6. Two RC circuits with a common input

A random voltage Uin(t) of a correlation period much smaller than the time

constant of the circuits is applied simultaneously at the input of both circuits.

It is required to find an expression for the mixed second moment of the response at

both outputs of the system. As in the preceding section, we sha]l give a solution

of the stated problem by using each of the indicated three methods.

The behavior of the examined system is described by a system of two stochas-
tic differential equations of the first order:

dU out t (t)
dt Jr- atUo_, t (t) _--- _,ui,,(t), (3. 143)

d. out z (t)
dl + 2zUo.t 2 (l) = a_uj,_ (t). (3. 144)

Let the voltage Uoutl be taken at the time tI and the voltage Uout2 at t2,

We then have for the sought-for mixed moment the following differential equation

(0 )(_, ' ( .... (in) ...-d-it -'}-at -+-22}m2 "2)(it, t2)=az=zm2 tgz, tz)- (3.145)

Applying formula (3.134), we obtain the double Laplace transform of the
second moment of the response.

=I_z..S
_zo_,t ,.z) (p,, P2) -----(p, +/_) {Pt + =,) tP_ + _'_)" (3. 146)

Returning to the original with respect to the variable Pl we now obtain:

_(out = lCZ,_
", "')(tt.p,)=

(/it + "z) (Pt -- "1) (e-t't' -- e-P't')" (3. 147)

Assuming tI > t2 for the sake of definiteness, using the delay theorem of

operational calculus, and then returning to the original with respect to the varia-

ble P2 we finally obtain:

m(z°_t t")(t,, t2)--_ _,+_, (1.48)=i'2 S [e -.,{t,-e,_ - e-(',t, +'_t,)].

By virtue of the full symmetry of both outputs in the case of t 2 > t t we can
write without further calculation:
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=taT. ._h,-=,(l,-t,l__ e-_.,l,+cd.)]_o,t t. 2) (tt. t=) =
(5. 149)

The obtained results (3. 148) and (3. 149) are similar in some features to ex-

pression (3. 109) obtained in the preceding section. We irfmediately notice they

satisfy the initial condition m2 (°ut 10 2) (0, 0)= 0. Further both expressions have

two terms in square brackets, the first term being a funct:on only of the difference

(t 1 - t 2) and corresponding to a stationary random process _hich approaches the

steady-state value for t 1--* oo and t 2 --* cO. The second tcrm, on the other hand,

tends to zero in the same limit.

The nature of the statistical dependence between the responses can be easily

traced by writing out the expressions for the normalized correlation ratio of

response. From(3. 148) and (3. 149) in view of (3. 125) we have in the steady state,

at t 1 _ t 2

Pou, ,. =(t,. tt)_--2r=t=---_¢-'(#'-_).'-/_--
at+ =8 (3. 150)

at t2_t 1
2 tr,.-'_

Po,t t, =(t=, t=)=---'-=e-z,", -',)
tit _ it2 (3.151)

As should have been expected, both expressions yield the same result at

t 1 = t2:

pout max ---_ =t-t- =t " (3. 152)

The strongest statistical devendence, which becomeF functional in the limit.

occurs when a I--* =t (P"_ l). As can be seen from comparison of relations (3.150)

and (3. 151), the steady-state correlation ratio of both responses is not, in

distinction from the autocorrelation ratios of each resp(,nse, an even function of

the difference (t 1 - tg). This may be readily comprehend¢ d by considerations

analogous to tho_e of=the derivations (3. 136) - (3. 141) of the preceding section.

Let us make the same calculations by the method of impulse characteristics.

For brevity we shall restrict ourselves to the case of stationary random processes

at the system's outputs.

We shall use expression (3.32) for our calculations, taking in it n = 2, and,

taking into account the uncorrelated nature of the applied nput, we shall give it

a form analogous to (3. 131). Then we shall obtain:

(3.153)

mtaO_ t, ,) (tt, t=) = S f _., (t, -- t) _.l (t= -- t) dt,

where t I > t 2. -

By analogy to (3. 119), the impulse characteristics o _ both circuits are expressed

as follows:

_, (t) = a,e-'.'; _= (t) = aze-','.
(3. 154)

Now the computation of the integral of (3. 153) gives..

t=

,.)=sf (3.155)

=== cllat Se-=,(t,-t,)
= I "_- IIII "

i.e.. aparticular case of expression (3. 148) for the stead, state.
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To conclude this section let us consider the calculation of the mixed moment

by the spectral method. Finding it amounts to computing the integral of (3. 100)

wherein, in this case,

al

KH (j_) = _, (3.156)

al

K,,(Jw)=,,+--j_-_. (3.15v)

F_.(=)= s, F_(=)=F=.=.(]=)=O. (3.153)

Expression (3. I00) assumes now the form

4oo

,f.m_=°*'' "=_(z) = _- K. (J=) K=I(]=) F,,.(=) eJ" d= =
(3,159)

-uo

4-oo

al= | S f •)''_d_ =l=S== W _ 1=,-1=) 1=,+ 1"1 = _ Se-".
-¢:o

However if t 1 _ t2, then, keeping in mind the remark concerning equation
(3. 100), we have:

+_

| f * . _m_,°ut l'=_(z)= _- gll(jw)K..,L(lu_)F=,(=)el dz.--_

===" S f _"d= = =,=._._ S¢_,,,.2 . (=t _,L.j=) (=l __ j=) =1_= = (3.160)
-¢o

Thue, the stated problem has been solved by each of the three methods set

forth in this chapter.

§ 18. The Problem of Two RC Circuits with a Common Output

The electric circuit in this section and the designation of its parameters

are shown in Figure 7. The left and right pairs of terminals will be regarded

as the two inputs, points a and b as the output. Random voltages of equal mean

squares a_n are applied across the inputs. Each of these voltages is stationary and un°

correlated, the second one being obtained from the first one by the introduction of

a delay time T.

i

Figure 7. Two RC circuits with a common output

By analogy to (3.128) we can express the second moment of each of the input
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voltages as:

m__ (t_, tz) = $._(t_--t,).

The mixed moment of both input voltages is determined as follows:

(3.161)

m(,'2)(t_, tz) ----S. _(t_ -- t_ -- T), (3.162)

where the voltage at the first input is taken at the tim._ tI and the voltage at the

second one-at t2. The objects of investigation are th, statistical properties

of the output voltage.

We shall first carry out the analysis of the random process by the method of
stochastic differential equations. The corresponding differential equation has the
form:

du om

dt "{-("t"_-e'z)U .... --_-attli"' -_=_Ui_" (3.163)

where

I I

=t ----"R-_ ; =z----_' (3.164)

Equation ($.163) of the given specific problem corr++eponds to the system of

equations (3.22) in the general case. In our case the number of inputs m = 2, the

number of outputs n = 10 the output reference number ass zmed the fixed value i = 1.

the input reference number has two possible values j = 1. 2. Since the system has

degenerated into a single equation, one should take k = 1.

In the differential equation of type (3.24) enter for the second moment of the

response the operators:

A_','*')-,-_+(",+_), 4, = +(-%-I-_); (3.165)

B_._J = B__ = _"_ = =, (J, = h = 1); (3.166)

B_,'*a = aS,_-- B(+'_= o, (A = A = 2). (3.167)

In view of expressions (3.165), (3.166) and 3.167) w-_ shall write the mentioned

differential equation thus:

+,,,,+,,,,,1+,,,, ,,,,,,=
= (¢qz --_ a[) m+ n (t,, tz) -{.- 2a,_mP+)(t,, tz). (3.168)

We shall subject both sides of equation (3.168) to a ,Iouble Laplace transfor-

mation with respect to the variables t I and t 2. We shall "ake into account expres-

sion (3.134) and also the fact that a computation similar t,J (3.133) yields:

z U'z,,t'z, _ • • (3.169)

The double tranaform of the second moment of rt sponse can then be ex-

pressed as follows:
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_(out) 2 2 S I

-(- 2=,0_ eP'r (P_ _- =l ± _*.) (P= t == -i--=2) " (3.170)

Assuming for definiteness t 1 _ t 2 and applying the inverse transformation, we

obtain for t 1_ T

for t 1 _ T

me,°"_it, t.)= __+ =f)le-¢'.*'.,rt,-,.,--_-_..*..,,,,*.Ji. (3 17l)

s i=_+ ,.: + 2=,e.__.,+e r] Xm_°"_(t,. t2)=
X [e-(=' +_Hr'- t') -- e-i',+',}(t,+ ¢.)I. (3.172)

L, et us examine expressions (3.171) and (3.172). We note first that at t 1 = t 2
(out)

= 0 we have m 2 (t 1, t 2) = 0. Further, fort 1 _ T the correlation between the

input voltages has no effect. One can easily convince oneself that (3.171) is the sum

of the moment-, of output voltages resulting from each of the input voltages separate-

ly. The point is that in this case the second input is not yet affected by the fluctu-

ation impulses correlated with the voltage impulses at the first input. At the time

t 1 = T the correlation appears and the second moment undergoes a jump-like In-

crease. The shorter the delay time T, the higher the relative value of this increase.

If t 1---* co and t 2 -+ c>o, while the time interval _ = It2 D tl I remains finite, ex-

pression (3.172) assumes the form corresponding toa stationary random process:

S 2 ____2=,__(., +,_) I,] e_(=, +,a," (3.173)

If T = 0, we obtain from (3.173)

I
m_°ut) (_) = _ (_'! -Jr- _) Se -(=, +_,)_, (3.174)

which coincides with the result for one circuit with the parameter = == _L_-==.

In fact, under these conditions we can connect in parallel the two inputs of the cir-

cuit, thus uniting the two circuits into one. ..

We shall carry out the same calculations by the method of impulse character-

istics. For making the derivations shorter we shall examine only a stationary ran-

dom process at the output of the system.

The impulse characteristics of the system are expressed as follows:

_H (t) -= =is -_', +'*,) t. (3.175)

_=z(t) ---_o_-(', +',)r . (3.176)

The relations (3.175) and (3.176) can be easily obtained from differential equa-

tion (3.163), taking one of the inputs as a unit impulse and the other equal to zero.

We shall use expression (3.39) to calculate the second momentof response. Since

only a stationary random process is considered, we shall take the lower integration

limits of thls expression equalto_oo. If the moments are of the form (3.161)
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and (3.162) one can carry out derivations similar to those preceding formula (3.131)

and simplify (3.39) as follows:

rn_°"t)(t_. t2) = S _u (t_t)_. (t=--t) dt +

t_ h

q- f [,, (t=-- t)[,z(t,+ r--t)dt + f _,,(tt+r--o_,,(t,--t) dt+
-co -oo

-{- f (i,(tz--t)[lz(t=--t)dt (3.177) (3.177)
-co

Substituting the values of |11(t)and Ill(t) in (3.177 and integrating,

we obtain:

S

m _out)(tt, t=) = _ )<

x [d + d + 2=1,_- ..*-, "l,- _''÷'' _''-". (3.178)

i.e. , a result which coincides with (3.173).

In conclusion we shall show how to obtain expression (3.178) by the spectral

method. In accordance with (3.135)the spectral densitie _ of the applied inputs will

be

S
Fin, (w) = Fi,,(ts) -_- --. (3.179)

The mutual spectral density of the inputs in (3.96) is in our case:

400

I f T)e-J.OdO S ej.T.Fj=(w) -_-T S • B(0--_-- =_ (3.180)

The transfer ratios of the system are given by

=1 (3.181)
K. (j-)----- =l + =7+ J" '

=_ (3.182)K,=(j-) -----"! + °_+ J" "

The application of formula (3.97) gives now the foil)wing result:

m(2_t)(_) = f(at_p "=P'=t+ .' • _- cos,.,, dw q-

0

0

+_

°1+" f-., ', °' "•=+;;,-F + _'., +_] ×
-¢o

xSe*'Te_"=.=_I=,+s ' °_+2=,=,." _"÷_'i×
X e- {=,_ =') ", (3.183)

which is identical with equation (3. 173).
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Chapter Four

SOME LINEAR PROBLEMS IN THE THEORY OF RANDOM PROCESSES

S19. One-Dimensional Brownian Motion

In the absence of an external force field the one-dimensional Brownian motion

of a particle is described, in accordance with the second law of Newton,by the fol-

lowing differential equation

d.
m _+ rv= f(f), (4.i)

where m and v are, respectively, the mass and the velocity of the particle, r is the

coefficient of friction encountered by the particle, f(t) is the projection of the total

force acting on the particle, as a result of molecular motion, on the direction along

which the motion of the particle is considered.

Equation (4.1) can also be expressed differently:

du
-_av = g(t), (4.2)

where the coefficient e, is defined by Stokes's law:

= 6____a__ (4.3)
m

Here a is the radius of the particle and _ is the vi_gsity coefficient of the

surrounding fluid.

Equation (4.2) is called the Langevin equation.

Since the function g(t) varies much more rapidly than the particle velocity,

this function can be considered as uncorrelated.

Equation (4.2) is entirely analogous to the equation (3.102), which describes a

random excitation of an RC circuit. Consequently, the already obtained re sult ( 3. 109)c an

be used. In this connection one ought to take into account that because of the

noncorrelation of the input it muat be assumed that _--_ oo, and to note equa-
tion (3.124), as well as the fact that the factor _ of the equation (3.102) is missing

in the right-hand side of (4.2). Having made these allowances, the second moment

of the particle velocity can be written as follows: for tl_>t 2

(m) Sm, (t,, tz) = _ le-"(',-_ -- e-"<',+'-q = Se¢-'#' Sh °t/Z' (4.4)

for tt > tt

,,,;"(t,,+,j= st+-,(',-,,, - ,-..,+',,j = s_o,,,, +,. (4.5)
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Under steady-state fluctuation conditions the meaa square velocity of the

particle will be

z S (4.6)

by analogy with (3.125).

For the determination of the quantity S we can use t le proposition of statistical

physics, which states that a system in a state of stationary thermal motion has a

mean energy of kT/2 for each degree of freedom [equipart tiontheorem]. In our case

m0__',_ ± sT. (4.7)
2 --2

This relation in conjunction with (4.6) gives

$ ----2as: ----2akr . (4.8)
m

To avoid misunderstandings, let us recall that the function g(t) of (4.2) is equal

to

g(t) ._ /'(t'b__. (4.9)
m

Therefore, the quantity S, which characterizes the ntensity of molecular agi-

tation, depends not only on the parameters of the liquid b it also on the mass of the

particle.

If at the initial moment t=0 the particle was at the origin of the coordinates,

(x= 0), then at the time t its position will be

t

x(t)-_- _( v(t)dt.
(4.10)

0

Expression (4.10)is an integral transformation of tae random function v(t).

This permits to obtain the mean square of the coordinate it the moment t in the

following way

t t

2 (,) (4.11)o.= f f .,, (t,,t,)dt, dt 2.

o o

Let us calculate the inner integral of (4. 11):

t t, t

U |=

S { ! __ e-at'-- e** sh a/z]. (4.12)
a

Now the calculation of the outer integral of (4.11) gices the following result:

_== 12_t__3+4e-*t--e-_,'l. (4.13)

The obtained expression shows that the coordinate _ (t) of the particle is essen-

tially a nonstationary random function. At t= 0 we have, as expected, _= 0.

z grows indefinitel/. This is explained byWill increasing t the mean square ox

the absence of a returning force.

If the time t is sufficiently long(at_>_ I|, then, in tae braces of(4.13)all

terms except the first can be neglected, and the formula _4.13) reduces to
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m s ¢4.14)

Wlth the use of previously obtained expressions (4.3) and (4.8) for the quantities

m and S we can finally write

o__ *T t (4.15)
x-- 3na_ "

This result was first obtained by other methods, by A. Einstein. The experi-

mental check by J. Perringave satisfactory agreement°

§ 20. Thermal Noise in Electric Circuits

It is known that a random thermal motion in the conductors of any electric cir-

cuit gives rise to fluctuating currents and voltages, which are often called noise.

For calculation of the correlation functions of these fluctuations,any of the m('_hods

considered in the previous chapter can be used. But any one of them must be sup-

plemented by a method for calculating the intensity of the fluctuations.

Figure 8. Elementary RC circuit

Let us consider the intensity of electrical fluctuations in an elementary RC circuit

(Figure 8). We shall assume equipartition, as in the foregoing section, i.e.,
that in any system which is in thermal motion the mean energy of fluctuation

is equal to kT/2 for each degree of freedom. In our case the state of the system

is completely characterized by a single coordinate: the voltage u across the circuit. We

have, therefore:
I • 2 I (4.16)
-- Co. _ _ kT,2

2
where _,, is the mean square of the voltage across the circuit.

From (4.6) we obtain:

z kr (4.17)

The fluctuating voltage u can be considered as originating from an equivalent

generator with a random electromotive force e(t), which has been connected in series
withthecircuit(Figure9). Since the thermal motion in the conductors is extremely rapid

the electromotive force e(t) is considered as uncorrelated.

For an uncorrelated random excitation of an RC circuit we obtained in § 15 the

equation (3.118), which we shall write here in the following form:

2 !
0,,= _ S. (4.18)
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From (4.171 and (4.18) we obtain

S = 2kTR. (4.19)

The spectral density of the electromotive force e(t) _s, in accordance with
(3.1351, equal to

F(w) _-- 2 I_TR. (4.201

I

e/t/

T
me

J
Figure 9. Simulation of electrical fluct.lations

in an RC circuit by introducton of

an equivalent uncorrelated electro-

motive force

Formula (4.201 for the spectral density of a fluctuat:ng electromotive force

was first obtained by H. Nyquist ]12/ . The substance of Nyquistts considerations

is also expounded in the book of S. Goldman ]13] . The anllysis given by these two

authors is considerably more complicated than ours. But ;t is more rigorous since,

unlike us, they do not make the a priori assumption of mcorrelatedness of the

random electromotive force.

Let us clarify which of the elements of the RC circuit (Figure 8) is the

source of fluctuations. We initially assume that the fluctuations are generated in the

resistance as well as in the capacitor. Then it can be said that the random electro-

motive force e(t) (Figure 9)c an be considered as the sum of two electromotive forces

eR(t) and ec(t), of which the first corresponds to fluctuations generated in the
resistanc e, and the second to the fluctuations originating in th_ capacitor (Figure 10).

As the capacitor is a reactance, the power produced in itby the electromotive

force of the resistance is zero, I.e., the resistance does n)t transmit its thermal

motion to the capacitor. Therefore, the assumption of a ncnvanishing fluctuation

electromotive forece eC (tl in the capacitor, leads to the c_,nsequence that the

resistance is continuously heated by fluctuation currents generated in the capa-

citor, i.e., its temperature must increase beyond all lilaits. This consequence

contradicts the law of energy conservation. The circum _tance that through the

resistance R flows its own noise current does not lead t_ a change in its tem-

perature, as the energy of this current is taken from the _ nergy of thermal motion

and is transformed back into heat.

Thus, the only sourc • of the fluctuations is the resistanc,._. The same considera-

tions could be repeated after replacing the capacitance by a:* inductance. Thus,

reactive components do not produce noise . These result_ can be applied to any

resistances and reactances in a composite electric circuit.
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Figure10. Resolutionof the equivalent fluctuating

electromotive force into two components

§ 21. Thermal Noise in an Electric Oscillation Circuit

The above results can be used for calculating the thermal noise voltage in an

electric oscillation circuit (Figure 11). Accordingto what has been said in the fore-

going section, the only source of the fluctuations in the circuit is the resistance r.

The "noisy" resistance r can be represented as a "noiseless" resistance of the same
value in series with an uncorrelated noise electromotive force of spectral density

F(o,) -_- 2 Itrr. (4.21)
r.

Then the equivalent circuit of Figure 12 can be used for the calculation of the

noise voltage u.

i±T
i

Figure 11. Electric oscillation circuit

The transfer ratio of the noise electromotive force is

I/j,,,C ")_ (4.22)

K (ju))-_- r + j,,L + |/j=C = w2--,o, + j2,= '

where =0 = !/]/'L-C is the natural frequency of the circuit and _ =r/2L the damping factor

The square of the modulus of the transfer ratio will be:

_ (4.23}

IK(J') r = (.. _ _02), + 4,'_'

The spectral density of the noise voltage u in the circuit is determined from

(4.21) and (4.23) in the following way:

2kT _ (4.24)

F. (,.) = T • (., - "o)' + 4.u,,
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Let us examine the structure of this equation. FlrsL we shall determine

the effective component of the equivalent resistance of the :ireutt (Figure 11):

R(_)-= Re [ (r + /,_L) l/j,_C ] = • ,Q (4. 25)
"r-_-j_,£+ IIj,,,C j (_,,_ _'_o)'+ 4,_,_"

By combining the equations (4.24) and (4.25) we obtain for the first of them

the following simple form:

F.(,o) = 2 kr. R(_). (4.26)
J¢

A comparison of (4.26) with (4.20) shows that the e::pression (4.20) can be

used in the calculation of the noise electromotive force as the effective resistance

as well as the effective component of the complex resistam e.

If the Q-factor (Q= .). L/r) is sufficiently high, the effective component R 0,,}

of the equivalent resistance of the circuit and the spectral density Fu(W ) of the noise

voltage, which Is proportional to R(m ), have a sharp maximum at a frequency prac-
tically equal to the natural frequency w0 of the circuit. This maximum is the sharper

the higher the Q-factor. Thus, with a high Q, the main part of the fluctuation

energy is concentrated in a narrow frequency band, cen'ered about about the natural

frequency _0 of the circuit. This means, that under the iadicated conditions the

fluctuations resemble harmonic oscillations having the n ttural frequency of the
circuit.

Using expressions (3.63) and (4.24) let us compute th_ _.second moment of the

noise voltage across the circuit:

m_ _(_) ----f F. (w)cos ,,_ d_. -----
0

21¢Tr4o [oo cos -': d_

- ;-
o

where

•WI _ _2

The mean square of this voltage can be found by assu-ntng • =0 in (4.27)

kT
a_--- --_-. (4.28)

Figure 12. Simulation of electrical fluctuations in an oscillation circuit

by an equivalent uncorrelated electromotive force
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If only the last result were required, it could have been obtained immediately
from the relation

I = !
-- Co. _ kT.2 _ (4.20)

which is known from the foregoing sections.

Let us continue the examination of equation (4.27). Noting that the quantities
= and wo are connected by the obvious relation

J w_

2 Q (4.30)

and assuming that the Q-factor of the circuit is sufficiently high (generally Q _ 100),
(4.27) can be simplified to

=_="_(t) = =_.,-"cos =o_. (4.31)

In order to grasp the meaning of this equation we shall consider the

harmonic oscillation

X (t) ---_ X¢o$ (mot -_ _), (4.32)

where _ is the random initial phase, all values of which are equally probable. Under
this assumption the second moment of the oscillation can be calculated as follows:

m_(G, G)= hi ix (G)" x(t=)l =

----M IX=cos (=ot=-t- _)" cos(=#=-{- _)l =
I

-----3" X= [A,IIcos =o(t=-- 6)I -I- M Icos I.,o(t_ _ t=)-1- 2_}]}
(4.33)

and finally

where

|

_=_)(t,, t=)= m_=_)(_) -----T X =cos =o, = ==cos =o¢,

• =lt=--G]; o' I

(4.34)

As pointed out above, the voltage fluctuations in a circuit with a high Q--factor

are nearly harmonic oscillations. They contain, however, a certain random

element. The larger the random element the weaker is, at fixed _ , the statistical
(_'_( _ Thisdependence and the smaller its quantitative measure-the second moment m 2 _,. "

randomness of the oscillatory process can be accounted for by introducing into the

equation (4.34) the factor _(_), which is equal to unity at _ = 0, and decreases with

increasing _. Thus we obtain

(;r} • tm = ( ) _---===+ (_) COS =o _. ( 4.35)

Equation (4.35) ta typical of those stationary random process which closely
resemble harmonic oscillations. In particular, of such a form is the second moment

of the fluctuations at the output of any selective system, i.e. , a system with sufficient-

tly sharp resonance properties, which is subjected to an uncorrelated input. The

form of the function _(¢) is determined by the structure of the system.

For a single oscillation circuit we obtain from (4, 31):

_(¢) _---¢-". (4.36)
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It follows from previous considerations that the damping factor _ entering
(4.36) characterizes the degree of randomness of the flucttations.

The character of voltage fluctuations in an oscillatioz_ circuit or at the output
of any selective system can be easily found from purely qualitative considerations,

by following the method of impulse characteristics. As already remarked in § 13,

an uncorrelated input can be considered as a succession of mpulse functions with un-

correlated areas, following immediately upon each other. _ single needle-shaped

input pulse imparts to the circuit a certain store of ene.'gy, initiatin_ damped

oscillations of frequency u_u. The resulting process is the sum of infinitely

many elementary oscillations of this kind. The oscillation_ from previous pulses are

attenuated, but the energy of the fluctuations is replenished by newly produced oscil-

lations. The sum of any number of oscillations of same frequency _o is also an

oscillation of the same frequency m0.

Since the initial amplitudes of the continually arising elementary oscillation

processes change at random from one process to another, the amplitude and the phase

of the resulting oscillation are also continually fluctuating, i.e., they are random
functions of time.

If the statistical properties of the instantaneous noise voltage are known, the

statistical properties of the random amplitudes and phases )f the fluctuation process

can be investigated. But this necessitates the use of nonlin tar transformations of

random functions, which we have not yet considered. We Fostpone, therefore, the

further consideration of the above problem to the sixth chapter.

§ 22. Thermal Motion of a Galvanometer

When working with highly sensitive galvanometers one I as to take into account

that the moving system of the instrument is in a state o' incessant agitation,

analogous to the Brownian motion, which renders very d fficult the measurement

of very small currents. This motion ts caused, on the one hand, by the molecular

motion of the air surrounding the system, and on the other land by the electric fluc-

tuation currents in the galvanometer coil.

We shall consider first the random fluctuations of the moving system of the

instrument, with the circuit of its coil open. Then no currezt flows through the coil

and the behavior of the galvanometer can be described by the usual differential equa-
tion of torsional oscillations

id_.____d_ r d0-_-_- D0 _ hi(t), (4.37)

where 0 is the deflection angle of the moving system of the ins*rument, I - its moment

of inertia, r-thecoefficientoffriction, D - the rigidity of suspension, and M(t} - the
random torque exerted on the moving system by the molecu:ar motion of the sur-

rounding medium. It is natural to consider the random function M (t) as uncorrelated.

We shall examine only stationary fluctuation conditions, using the method of im-

pulse characteristics.

Assuming the right-hand side of equation (4.37) to be _ unit impulse function and

applying to both sides of this equation the Laplace transforcmtion, we obtain the fol-

lowing expression, representing the impulse characteristic of the galvanometer:

I (4.38)
O'(P)---- p;/+ pr +

and by introducingR= r]2I - the coefficient of damping, m0 : _/D-]/-the natural fre-

quency of the moving system_ _ 2 "_- _, --_, we obtain

Iz,,,

" "PP = I I(P "1-_,)s -- P_]"
(4. 39)
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In the following, only the aperiodic case of the motion will be considered,

when a I _> wz i.e. _2 _> 0. Then the inverse transformation of (4.39)gives
@* •

| ag 0

0 (t) _ _ e- sit _l. (4.40)

For the calculation of the second moment of the angle 8 we use equation

(3.132). Substituting in its right-hand side the expression (4.40) for the impulse char-

acteristic of the instrument and integrating, we obtain

,,;",(, = _ ,.-., +,(,:, _._+ _ ,h _I ', I_. (4.41)

Assuming in (4.41) _ =0, we obtain the mean square of the angle 0:

01= s
2r--D" " (4.42)

To find the value of the unknown'quantity S we shall apply the same method as

in foregoing sections. The component of the mean fluctuation energy with respect
to the coordinate 0 is

i D_| I._ _.-_kT. (4.43)

Combining (4.42) and (4.43) we get

S _ 2k Tr. (4.44)

The obtained result calls for two comments. First, Its similarity to the

formula (4.19), which was obtained in S 20 for the noise electromotive force of the

resistance, should be noted. Second, we note the double role played by the medium

which surrounds the moving system of the instrument. On the one band the medium

opposes the motion with a moment proportional to the coefficient of friction r, on the
other hand it causes the random torque M(t), whose value S is proportional to the same

coefficient r.

In view of equation (4.44) we can put relation (4.41) into its final form:

m_b_(':) _ -D--kTe- o {" I(¢h pz -.Jc _-shplzl). (4.45)

AS a check on this result let us calculate the component of the mean energy with

respect to the other independent coordinate of the moving system - the angular rota-

tion velocity m=d 0/dr. As was shown in S 7, on differentiating a random function,
its second moment is differentiated twice. If the differentiated function is stationary,

as in the present case, this differentiation is done with respect to the time interval
and the obtained value is taken with the opposite sign (formula (2.41)). Thus:

d_ m (_) ('_) (4.46)
m_+)(_) = d;,

Differentiating twice and then putting c=0 we obtain:

2 kT (4.47)

The mean energy of fluctuation along the coordinate _ is, as expected,

_- _ -_ kT. (4.48)
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Figure13. Moving system of a gal"anometer

in a magnetic field

So far we assumed that the circuit of the galvanometer coil is open. Now let

us suppose this circuit to be closed by the resistance R. For simplicity we shall as-
sume R to be so large, that the resistance of the coil and the action of its self-

induced electromotive force can be neglected. First we st'all examine the motion

of the moving system of the instrument as caused by the action of the surrounding

medium. In that case the closing of the circuit should be considered only as equiva-

lent to the appearance of an additional retarding moment, c;tused by the current in-
duced in the coil.

Let us calculate the electromotive force induced in the coll by the rotation of

the moving system. For this we shall use Figure 13. The 'ield in the gap of the

magnetic circuit of the instrument can be considered as radial, in a first approxima-

tion. In addition, it can be assumed that on rotation of the ,_oil, its sides parallel to

the axes move in a uniform magnetic field. Let v be the velocity of this movement,

n the number of windings of the coil, and B the magnetic inCuction in the gap (other

designations are shown in the figure). Then the induced ele :tromotive force is

• _ 2Bl_n. (4.49)

Since the velocity v is expressed by the angular velocJty of rotation as follows:

b b dO (4.50)
_'_-_-2"_--" 2 dt '

formula (4.49) can be given its final form:

e._. A dO
dr'

where

A :- Blbn.

(4.51)

(4.52)

Under the above assumptions this electromotive force generates in the
circuit of the instrument the current

• A dO (4.53)
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Interacting with the magnetic field,the current i generates the retarding torque

A_ dO
Mre t : Bllnb -_- Al :- -_- -_-. (4.54)

By introducing into the left-hand side of differential equation (4.37) the addition-

al retarding torque (4.54), we obtain:

/ d_0 r' dO
-_i-q- "-di-q-DO: M(t) • (4.55)

Here

A t

r' : • -+ -_-. (4.56)

The statistical characteristics of the right side of (4.37), as expressed by the

formula (4.44), remains unchanged. Therefore, without further calculation, we

can use the ready result (4.41), by replacing it in r by r' and retaining the previous

value of S, as expressed by formula (4.44). Thus

krm_J (I:):- --_--_ e-" l'I(ch [_'z-}- sh _'[,l), (4.57)

where

,,, r" _,=_-; = _. (4.58)

For the mean square of the fluctuations of the angle 8, which are produced by the

molecular motion of the medium surrounding the galvanometer, we obtain:

z kT •
00, D r' • (4.59)

The mean square of the fluctuations due to thermal motion of the medium is

thus seen to decrease owing to the retarding torque of the forces on the induced

current.

Let us now examine the random oscillations of the angle 0, which are produced

by the electromotive force el(t}, generated in the resistance R. The random torque,

generated by the action of this eiectromotive force, is equal to

A
34, (t)--=AI, (t)= -_ e, (t). (4.60)

In accordance with § 20 this electromotive force can be considered as uncor-

related, and its magnitude Sel is expressed by formula (4.19). Therefore, the torque

Ml(t) must be also considered as uncorrelated, and its magnitude SMI is determined

by:
A _ A _

SMi _ "_ Sel _ 2kT _-. (4.61)

The random function 02 satisfies the differential equation (4.55), in

the right-hand side of which the torque Ml(t) replaces the torque M(t). Therefore,
the expression (4.41) in which r' replaces r and the quantity S is defined by formula

(4.61) is valid for the second moment of the random angle 02. Thus,

(I,_ ,,_. krA 2 a"
m, _ I=:D---_e-°'l'I(¢hIV_q--l_-shIV[_I). (4.62)
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The mean square of the fluctuations of the angle 0z i_ equal to

z ItTA 2

Or, _ Dr'R "
(4.83)

Th_ _ random angles 0_ and O.aare statistically independent of each other. There-

fore the mean square of the resulting angle0 - 01 -Jr- OziS o_)tatned from (4.56), (4.59)

and (4.63) as follows

z 2 2 kTr . kTA _ kT / . .4_\ kT

°e=°e,-_°e,= Dr9 t D_=Dr'_ r-f--R-)=-D -' (4.64)

t.e. , the mean energy of the fluctuations along the coordinate 0 is, as before, equal
to

1 kT I
2 --_-_--_D=-_kT. (4.65)

Thus, closing of circuit of the galvanometer has no influence on the

mean square of the fluctuations of the angle 0 • In other words, whatever the mech-

anism of the transfer of thermal motion to the system, the mean square of its fluctu-

ations along each of the independent coordinates remains unchanged.

From this constancy of the mean square of fluctuations in no way follows

that the character of the random motion of the moving syst_m of the instrument is

independent of the quantity _'. This can be easily seen bf considering the

spectral density of fluctuations. Their second moment car, be represented as follows,

in accordance with the results obtained above:

fl p

(4.66)

By substituting this expression in formula (3.62) and :ntegrating, we obtain after

some simple transformations:

4 , ., _ l

Fe(,, ) -_ -_ = w_=e (.. _ =oZ), -J- 4.,z_, z , (4.67)

Introducing the dimensionless frequency _ _--- _/_u and the damping factor

d = 22' "'u we obtain finally:

where

i.. e(.j) 2 d 2
-_ --_ oe_o(_. d), (4.68)

J

cp(_, d)_- (_2_ I)z _ ,f2Ez " (4.69)

The function ? (_,d) characterizes the dependence of the spectral density of

fluctuations on the frequency. The graph of this dependenc_ is shown in Figure 14.

It can be seen from it that at sufficiently small damping factors d(galvanometer

circuit open, friction coefficient r small) the spectral dens ty of fluctuations has a

sharp maximum in the range of frequencies near the naturaL frequency of the moving

system. In other words, the character of fluctuations is sJmilar to the character of

harmonic oscillations of frequency mo. On the other hand, for large values of the

damping factor, the fluctuations have a highly random char, tcter.

The thermal motion of measuring instruments and its influence on the accuracy

of measurement are considered in detail in the monograph i)y V.L. Granovskii /14/.
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Figure 14.

I
I
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o.J 1.0 Ij

Spectral density of galvanometer fluctuations

as a function of frequency

§ 23. The Passage of Irregular Telegraph Signals through a Linear Filter

Let us consider a telegraph signal consisting of a sequence of elements of

two kinds (so called binary transmission). The simplest element of the signal

is a rectangular pulse of amplitude A and duration T. We assume that all pulses

follow directly upon each other, have equal characteristic parameters A and T, but

can have with equal likelihood positive or negative sign. Moreover, we assume that

the signs of individual pulses are statistically independent of each other. This is

the simplest mathematical model of a telegraph signal, which we shall adopt in the

following considerations.

Let us find the second moment of such a signal a(t). At • >T, by virtue of the sta-

tistical independence of the signs of two neighboring, non-simultaneous pulses, we have:

m__ (_) = M la (t) •a (t + _)1-----0. (4.70)

Let now _ T. We choose a certain time moment t, contained by one of
the pulses. Let us assume that the time interval between the beginning of this pulse

and the moment t is a random variable, which can have with equal probability any

value between zero and T. A later moment t +_ can fall within the same pulse

or the next one. The first case takes place if 0 < t <_ /'--_. We have

Mla(t) • a(t -[-'OI = A'. (4.71)

The probability of the first case i_ equal to_-: 1 --- y. Hence if

T - _ <t < T, the time moment t+ _ is contained by the next pulse. Then

M [a(t)a(t-_-_)] -_0. (4.72)

The probability of the second case is tiT. Averaging the product a(t) • a(t+ T)

over all possible initial positions of the pulse, we have :

.,;o,.,= =,,,(,-+).
Since all the pulses are completely equivalent, this result is valid for the inclu-

sion of the time moment t within any of the pulses. Thus, (4.73) is the
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sought-for expression for the second moment of the telegraph signal. The mean

square of the signal ordinate is _z = A2 Therefore, formt_a (4.75) can be written
as follow $:

m_a'(_)= , _ (I---_-). (4.74}

m 21rl

02

0 ,
I

Figure 15. Graph of the second mom_ nt
of an irregular telegraph signal

The graph corresponding to equation (4.74) is shorn in Figure 15. Using

the formula {3.621 we find the spectral density of the signal
T

f o,(,
u

= 20Z 1 _COS to'_
. _ (4.75)

The spectrum of the signal is shown in Figure 16. We have now obtained the

necessary statistical characteristics of the signal and can p_oceed to the analysis of

its action on a linear filter.

,£ t_/

_o

Figure 16. Graph of the spectral densLty of

an irregular telegraph sigrml

Let us consider an RC circuit (Figure 2) as the simplest filter. Itsbehav-

ior is described by the differential equation (3.102).

The filter causes distortions of the signal, i. e. , the "e appears a certain error

e (I)_ Uout (t)--um (l), (4.76)

which is, as the two terms of the right-hand sideof(4.76), _ random time-function.

We can use the mean square _: of the error e(t) as a measwe of the distortion.

Let us write the differential equation (3.102) as folloAts:

d(uou t _ui_} dlin (4.77)
at --I-a (.oo, -- .,,, ) ------ ,'t

or, differently,

de dain (4.78)

+ as = dt •
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Weshall use the spectral method. Then we have to calculate the frequency
characteristic of the filter error. For this we assume

Uin :[]i.eJ'ro i:EeJ -r (4.79)

and substitute these values into the equation. We get:

whence

K(j=) ..... • (4.81)
Ui, = +Ira

The square of the modulus of the frequency characteristic of the error is

equal to
w2

IK(]=)[ =: =,+=, • (4.82)

The spectral density of the error is expressed as:

202 I -- cos =T

F'('@=F_n(=)'IK(J=)I== xT =' + =_'- " (4.83)

The mean square of the error is:

2== _o1-- cos =r ==o_ : P,(uOd= = _ j ¢j_t_= t ,loJ:-_-_-(l --e-,T). (4.84)
u o

The relative root mean square error is defined as follows:

_¢=-;-=y' (l-,-.,,.
We introduce the pass band A]o._ of the circuit, by which we shall understand

the frequency band in which the modulus of its transfer ratio (3.130) is not less

than I _/r2. It can be readily seen that to the upper limit of this band corresponds the

angular frequency t%. 1 : a, whence we have:

AfO.1 : _'_. (4.86)

Now, expre_szon (4.85) can be brought into following form:

"q -_- 2x&fa_ T (4.87)

If the pass band of the filter Af0.1 _ 0, then the relative error becomes_= 1,

i. e. , the signal is not reproduced at the output of the circuit. At Afo._ _ oo we have

_ 0, i. e., the error tends to zero. The dependence of the relative error

on the product Afo.1T is shown in Table 1.

Table 1

_fn, TT 0.0 0.1 0_ 0.3

1.00 0.87 0,76 0.67

At Afo.lT > 0,5 the value of _ can be calculated by the approximate formula
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l_-oA. • (4.88)
Y _ZILTI

with an error of less than 2%.

Taking _] = 0.3 (about 10% of the signal power), we obtain from (4.88):

Afo.TT_ 1.8. (4.89)

It is generally assumed that, for a satisfactory reproduction of the form of a

telegraph signal with continually alternating signs of the pulses, the filter must let

through the third harmonic of the basic frequency of the signal. The basic frequency
of such a signal is equal to 1/2T. Thus we obtain:

3 2-_ = _)¢o. 7 or AIo._T= 1.5, (4.90)

i. e. , a result which is close to (4.89).

Let us now consider the mean square error of such a filter, which results

if, in addition to the useful signal, an uncorrelated noise of spectral density Fn is
applied to its input. Since the signal and the noise represent processes which are

statistically independent of each other, the mean square o_, of the resulting error
can be expressed, in view of (3.118), (3.135) and (4.84) as f911ows:

¢2

o.zo-_- _-_-(1 -- e-sP)-_ - _-_, . (4.91)

whence we obtain for the relative root mean square error

%o / l
V (1 --c-'r)-t-aTA' (4.92)

whe re

z F n

A _--- -_ ,z----_-. (4.93)

Let us trace the connection between the resulting error and the pass band

width, i.e., the quantity aT. If the pass band is narrow, 1he main component os

the error is produced by the distortions, caused by the filter, as the mean square of
the noise at the output is small. Conversely, if thepass ban iis wide, the distortions

mentioned above are insignificant, but the mean square of t m noise voltage at the out-
put increases in proportion to the band width.

From these considerations one could expect that it i_ possible, under certain
conditions, to realize a most advantageous pass band, whici_ would ensure a minimum

value of error. Referring to the extremalvalues of expression (4.92), the mini-

mum of the relative error _]0 can be readily obtained for the condition

A-- I -- (I + aT) e-°T
(_T)_ (4.94)

From this expression Table 2 has been constructed Jor optimal values of a T.

Table 2

(aT)°pt I
0 I 2 3

A [ 1.00 I 0.25 0.15 1 0.089
O.OJ8
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At (aT)op t >5 one can set, with an error of less than 4%:

whencelt can be con

I

A----___.r_'p-- ' (4.9s)

1

(aT)opt = _. (4.96)

It can be concluded from these results that the higher the relative noise level

A at the input of the filter, the narrower the optimal pass band. At A_ 1 no optimal
band exists.

In view of relation (4.89), to which corresponds aT= 11.3, we conclude that

large values of aT, for which formula (4.96) is valid, are of practical interest. Sub-

stituting the value foraT obtained from (4.96) into (4.92), and taking into consider-

ation that fora T> 5 the exponential term can be neglected, we obtain:

,_,,,._o= V_ V"A'. (4.97)

Given the required value of _.lmin we can find from this expression the corres-

ponding value of A. With known level of the noise and the desired duration of the sig-

nal. i.e., the speed of transmission, this permits to obtain, with the help of (4.93),

the necessary level of the useful signal at the input, and also to find from (4.96) the
optimal pass band of the filter.

The foregoing was an example of the analysis of a specific system, from the
point of view of the root mean square error, suffered in it by a signal. The criterion of

root mean square error was introduced into the theory of random processes by

A.N. Kolmogorov ]15, 16/and was applied to a number of practical problems by

N. Wiener /17/. At the present time, this criterion of quality of a system finds an

ever increasing application, especially in the theory of automatic control /18, 19/

But it should be in no way considered universal. This is seen, for instance, from

the following example. In pulse radar for long distance detection it is desirable

to be able to detect the weakest reflected pulses against the background of

fluctuation noises. Here the distortion of the pulse shape at reception is a second-

ary factor only, as it is first of all important to ensure that the peak value
of the signal should surpass the noise as much as possible.

S 24. The Optimal Filter Problem

The linear problems of the theory of random processes, as considered in

previous sections, are characterized by the following statement of the problem:

given a specific system and its parameters, as well as a sufficiently complete sta-

tistical characterization of the input; to calculate the responses of the system to

this input. These problems may be classified as belonging to the analysis of sys-
tems under random excitation.

In allcases, except the one considered in §23, onlythe responseto random
input was considered, and no conclusions about the desirable values of the para-

meters of these systems were drawn. But from the point of view of classification

of problems this fact is not essential.

Besides the problems of analysis, problems of synthesis of systems subject

to random excitation are also of great interest to the modern technology of auto-

matic control. In these problems the structure of the system is not defined,

and the totality of all possible systems of a certain class (e. g., the class of
linear systems) is considered. It is required to choose from this class the
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optimalsystem _e. g., from the point of view of minimum root mean square error). This

problem was first considered in its general formulation by A.N. Kolmogorov /16/.

Results important for practical applications were also ob:ained by N. Wiener/17/.

A clear and comparatively simple presentation of the corresponding mathematical

questions was given in the comprehensive article by A.M. -faglom /3/. The same

problem was considered in the monograph of V. Vo Solodovr ikov /19/and in the later

works of V. S. Pugachev/20, 21,22,23/ . We will give here only one simple particular

example for the synthesis of an optimal system, which ensures minimum root mean

square error of reproduction for a useful signal of specific shape and uncorrelated

fluctuations at the input.

As the signal we take an input with the following properties. The voltage Uc(t)
can take either of two discrete values +U and -U. The m,:an number of changes

of sign of the signal per unit of time is denoted by n. "?he instants of sign change

are random, and the probability for k sign changes during tle period • follows the

Poisson distribution

W/(k) _--- _ e- m_. (4.98)

We remark, that the Poisson law is met with in many statistical problems, in

l_rticular in the theory of electron emission by hot cathodes. If the mean number
of electrons emitted by the cathode in unit time is n, and the individual electrons are

equally likely to leave the cathode at any time and do s,) independently of each

other, then the probability for emission of k electrons l y the cathode in time

z is expressed by the same formula (4.98).

Let us find the second moment of the signal. The w_lue of the product Uc(t)-

•Us(t+ z) is equal to U 2, if during the time • the number of s-gn changes has been even,

and equal to -U 2 for an uneven number. We have, therefore,

m__ _) = UZ I w (0) + W (2) Jr- W (4)+ ... ! -"

--UZlW'(,)+ _v(3)4-w(5_+ ...I
(4.99)

or, substituting the value of W(k) from (4.98) , we obtain

nz (n_)'- (n_)_nl_,l(z)_UZe -" I ---_--J- _. ,_ --_- ..)=U=e-znL (4.100)

Let us now formulate our problem. At the input ¢ f the linear electrical
system acts a stationary random excitation consisting of the signal u and the
fluctuation noise u : c

n

uz(t) = uc(t)_-u. (0. (4.101)

The second moment of the signal is given by the expression (4.100) and

the noise is uncorrelated. The voltage u2(t) at the outpu: of the system re-
produces the signal Uc(t) with a certain error

• (t) = u._(t)-- uo(t),

whose mean square is equal to

(4.102)

z z z 2rn_ (0). (4. 103)
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where m2_C)(0)¢2 is the mixed moment of the input signal voltage and the output

voltage, calculated for the two voltages considered as functions of the same

time argument.

The mean square error a 2, is determined, on the one hand by the external in-

fluences, and on the other hand by the structure and the parameters of the system

which are unknown. The problem consists in finding the structure and the parameters

of the linear system which would ensure a minimum mean square error under given

external conditions,

Let us set up the explicit expression for the mean square error. The mean

square of the voltage at the output of the system will be determined by formula (3.30)

= t2 = 0 and the lower integration limits as equal to -- •c:in which we set tI

@ o

o:= f f t;)de (4.104 
-oo -co

By change of integration variables t'l= -x, tJ2 = -y, equation (4. 104) assumes
the following form:

a_._- [(y) dy m_ --x)_(x)dx. (4,105)

0 U

(2c)(0) let us write the integral trans-
For computing the mixed moment m 2

formation which determines the response of the system

° ?f ul(O_(__t)dt-- ul(x)_(x)dx. (4.106)HI(O) _
-co ip

The moment m:2C)(0) can be considered as the mixed moment of two linear

transforms of random functions, the first of which being defined by the expression (4.106)

and the second consisting of the product of the random function Uc(t) and unity. Having

in view the general formula (2.73) we obtain:

m_z'_(0) : fm_'Cl(x)[(x)dx. (4.i07)

u

where m2(lc)(0) is the mixed moment of the voltages ul(t) and Uc(t), which, because

of the statistical independence of the signal and the noise, is equal to

m_¢'(x)=m_'(x). (4.108)

In view of equations (4.105), (4.107) and (4.108), we can now write the mean

square of the error in the following way:

o.= o;--2 m_° (x) _(x) dx ÷
J
o

¢0 _o

0 0

Relation (4. 109) is valid for any form of the moment functions of signal

and noise. Only their statistical independence is necessary, in which case follows

(4. 108) which we used above.
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Themean square of the error (4.109) depends on t_leform of the impulse char-

acteristic : (x)of the system. First one has to find such a functlon_ (x), for which the
• .J"

quantlty :, has a minimum. Problems of this kind are d_ alt with by the variational

calculus, whose methods we shall use. Then, once the iz-tpulse characteristic of the

optimal system is known, one has to determine the struct ire and the parameters of

this system.

For determination of the impulse characteristic oI the optimal system we shall

proceed in the following way. Let us assume that the mi_,imum of the mean square

error is obtained for the impulse characteristic _0(x). W,.• shall replace in the

expression (4.109) the function _(x) by the function _0(x)+'_](x), where _l(x) is
some function which vanishes for x < 0 and is otherwise arbitrary, and "r is a pa-

rameter indeI.endent of x. The indicated operation of the calculus of variations is

equivalent to an increase of x by A x in differential calculus.

After this substitution it is easily found from (4..09_t that the departure
[variation] of the mean square error from its minimun_ _uals

8o,_----21-- _"_(x)_(x)#x÷
0

0 0

+._t f ,_(y)ay m_'(y -x)_(x)ax. (4.110)

0 0

The necessary condition for the extremum of the cuantity a.s is analoguous to

the corresponding condition for extrema of functions of ol e independent variable,

and it has the form

___jT.o___ 0 (4.111)

for an arbitrary function _(x}.

By carrying out operation (4. 111),we obtain:

f m_"(x)_(x)dx--f _(y)dy f m_"(y--x)_o(x)dx=O (4.112)

o 0 0
or

Since the functionTl(x) is arbitrary, condition (4.1:3) can he fulfilled only for

m_°'(y)=fm_'(y--X)_o(X)dX (O,'y < oo). (4.114)
0

Such a condition is necessary for the mean squar: error to be a minimum. It

can be proved that this condition is also sufficient.

Equation (4.114) is Fredholm _ s integral equation _f the first kind. For the

general case it is relatively difficult to obtain its sotutio 1. Therefore, we terminate
our calculation of the general case by the obtained resull, and turn our attention to

the specific problem, as formulated at the beginning of t its section, for which a

solution can be obtained by simpler means.

The moment m2 (c) is expressed by formula (4.10 }). The moment m2 (1) of

the input voltage consists, because of the statistical independence of the signal
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andthenoise,of thesumof theirmoments,whichwecanwriteinviewofexpres-
sions(3.128}and(4.100),inthefollowingway:

m['_ (y -- x) _ U2e-_ ! w- z l - l- S_ (y -- x), (4.115)

where i_ = 2n. Let us substitute in the integral equation (4. 114) the indicated values

for the moments. Then, in view of

f s_ (y -- x) _, (x) dx = S_, (y). (4.116)
we have: o

oo

U2e-_y -_-S_o (y) + U _ f e-_ Is-x I_o(x) dx. (4.117)
o

Equation (4.117) is Fredholm' s integral equation of the second kind. Let us

apply to both members of this equation the Laplace transformation. The trans-

form of the _,definite integral, in the right-hand member of (4. 117), is equal to

f, " o f,-*' (x)ax--
0 o

oo oo

= f  (x)ax f
o 0

= f _o(x)ax e-_t'-w_e-t'_dy+ e-8(s-zle-I, tdy
0

° ?
0 0

I q' --

'=7:3__ _(P) /,2_"_, %_p). (4.118)

Taking (4.118) into account, we obtain the following operational equation:

whence

US 2_U's E" t_
(4.119)

_o(P) U': I --_(_) (4.120)=.--_- I_ --_,(13)1 (p.

From the list of formulas of operational calculus we take the relation

P*'P--a--b' " ,chbl--bShbl__l (l ---_)ebt_Jr. 2 (l.___b)e-bt. (4.121)

As the required impulse characteristic has to satisfy the condition _(oo)= 0,

the function of which (4.120) is a transform cannot contain a term which would

increase exponentially with increasing argument. Therefore, in (4.121), a must

equal b, which corresponds in (4. 120) to

I---'_-_ -- -'_" (4.122)

Relation (4.122) permits the elimination of the quantity _ (_) from the equa-

tion (4. 120) and thus to simplify it as follows:

77



where

[0(p)-_ _* i
1/_ p+ Ptrl% -t" (4.;2s)

2_
k = _. (4. 124)

Let us recall that the quantity_ entering (4. 123) anc (4. 124) ls equal to double

the average number of sign changes per time unit.

By transforming (4. 123) back to the original, we obtain

(4.125)

Thus, the required impulse characteristic of the optimal system has been found.

Knowing it, the structure and the parameters of the system can be determined. Neg-

lecting the factor in the square brackets of (4.125) and comparing (4.125) with (3.126),
we can conclude that the RC circuit with the parameter _ equal to

• _--- _/| -_- k. (4.126)

has the impulse characteristic (4. 125).

Figure 17. First circuit of an optimal filter
for an irregular telegraph signal
and uncorrelated fluctuation noise

The presence of the above-mentioned factor means that a voltage" divider must

be introduced into the circuit. In this way the circuit of F:gure 17 is obtained. Its

parameters are to be chosen in accordance with the condit:ons

R.., k (4. 127)

I I i_l = + (4.128)

Assuming arbitrarily one of the parameters, the t_o others can easily be
found from (4. 127) and (4.128). Of course, the shown stru:ture of the optimal system

is not the only one possible. In particular, the same result is obtained with the cir-

cuit of Figure 18.

Figure 18. Second circuit of an optimal filter

for an irregular telegraoh signal
and uncorreiated fluctu_tion noise
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The task of the above-considered optimal system was to reproduce, in the

presence of interference, the input signal with minimum mean square error. In the
theory of automatic control a more general problem is also considered, where a

system operatmg under the same conditions has to perform with minimum of error a

certain transformation of a signal; the line of reasoning in this case is analogous
to the foregoing.

S 25. Elements of the Theoryof Potential Noise-Stability

The concept of optimal system, as introduced in the preceding section, is

in no way universal. In the following a different formulation of the problem is con-

sidered, in which the concept of optimal system acquires a completely different sense.

This theory, which will be sketched in the following,was developed by V. A. Kotel'nikov
1241.

Let us consider a communication channel under the action of random inter-

ference. The method of technically realizing the channel is of no importance for the

following. We shall assume that for the transmission of the information through the

channel two kinds of signals of equal duration T, denoted by A(t) and B(t) are used.

An example of such a transmission of information is telegraphy using the Baudot

code, where one of the signals is switching the current on, and the other is

the interval or switching on a current of opposite sign. The mode of transmis-

sion is assumed to be known, i.e., the determinate functionsA(t) andB(t) are given.

The input of the apparatus which is placed at the output of the channel--it will

be called in the following receiver--is acted upon by X(t), being at any moment the

sum of one of the two indicated signals and of the interference W(t), which is a

random function of time. Thus, it is either

X(I) -_ ,4 (t) -_- W, (t), (4.129)

or

X(t) = B (t)-4- W, (t), (4.130)

where Wl(t) and W2(t) are distinct realizations of the random function W(t).

When receiving the signal X(t), the receiver must respond to one of the two signals

A(t) and BCt) which constitute its input. The basis for the response is the com-

parison between the disturbed signal X(t) and the signals A(t) and ]_t), which
are in some way applied to the receiver. The reaction of the receiver is determined

by the closeness of X(t) to one of the signals A(t) and B(t). The concept of closeness

here used is conditioned by internal characteristics of the receiver.

As the various realizations of the disturbance may vary greatly in form,

it may happen that the input X(t), containing the signal A(t), is closer to the signal

B(t). In such a case the response of the receiver will be false. The receiver may

also respond to an X(t) containing B_t) as if it were the signal A(t). Such errors

cannot be eliminated in principle, i. e., a certain percentage of response errors

is unavoidable. The probability of error depends on the internal structure of the re-

ceiver, i. e, on the concept of closeness of two functions it employs.

Following V.A. Kotel'nikov we shall call a receiver ideal, for which the proba-

bility of error is minimum. This constitutes the optimal system, whose properties

are studied by the theory of potential noise-stability.

First we have to clarify the concept of closeness which is needed for the re-
ceiver to be ideal in the above-mentioned sense. We shall assume that the inter-

ference is a stationary random function of time, with normal distribution
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W_
l

_(tr)= _,, e b,. (4.13l)

After receiving the signal X(t) we can say that in .he given ease the interference

had appeared in one of the two possible realizations, eitl_er

IIVt (0 -_- X(t) -- A(t).

or

(4.132)

W z (t) = X(t) -- B (t). (4.133)

If the realization Wl(t) is more probable, then it i_ also more probable that

the input X(t) consists of the signal A(t) andthe interference. In the opposite case it

is more likely that X(t) contains B(t). Therefore, it beo,mes necessary to consider

the probabilities of the different realizations of the interierence.

Let us assume, for simplicity, that the interference is an uncorrelated ran-

dom function of time. Then, by virtue of the statistical independence of its ordi-

nates Yl' Y2 ........ Yn the n-dimensionalprobabilityde=lsityofthese ordinates will be

I l z

_(Y,, Y= ..... yn)_-__exp --_;i yi , (4.134)

where n can be arbitrarily large. This probability dens ty is the larger, the smaller

the sum of the squares of the ordinates, or, in other wozds, the smaller the mean

square of the interference the more probable it becomes. T: mrefore if the inequality

T T
I

f(X-- B) = it, (4.135)4j'(X--A)2at<7
tt o

holds, it is more probable that the signal A(t) is the one transmitted. If

I I f(X__B)=,tt '--7I (x-- A)Z,tt > y (4.136)
J

0 U

then it is more probable that the input X(t) corresponds to the signal B(t). By defi-

nition the probability of error in an ideal receiver must _e minimal. Therefore, the

closeness of two functions must be estimated in the i¢ eal receiver by the mean

square of their difference.

Let us consider the condition under which the ideal receiver gives a false

response. Let A(t) be the signal at the input of the c)mmunication channel, i.e.,

X(t) = A (t)2r- IY/(t). (4.13 7)

The response of the receiver to the signal (4.137) depends on which of the two
inequalities (4.135) and (4.136) holds. This depends ontl e form of the realization of

the interference in the given case. Suppose that form of the interference is such that

the inequality (4.136) holds. Thentheresponseofthereceiver is false. We obtain the

condition for this error by substituting into (4.136) the tr'Le value of the function X(t),

given by (4. 137). Thus, the condition for the error o; the ideal receiver is

T T
I

f w, (o _t> 7 f tA(o + Iv (t)-- v (01'dt (4.138)
o u

After some simple transformations we obtain thiv condition in its final form:
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T T

O

(4.139)

The probability of error of an ideal receiver is equal to the probability of fulfill-

ment of inequality (4.139).

If the method of transmission, i.e., the functions A(t) and B(t) are given, then

the right-hand part of (4.139) is some constant function. The left-hand part of (4.139)

represents an integral transformation of the probability function W(t). From the as-

sumptions made concerning W(t) we obtain that the left-hand part is a normal ran-

dom variable whose mean square, according to (3. 132), is

T

at = S f IA (1)--B (t)l' dr. (4.140)
0

Therefore, the probability of error of an ideal receiver becomes

-_-_qe S" dz, (4.141)

where

T

M= ½f tA(0- B(O,'dl. (4.142)
o

We shall introduce into (4.141) a new variable of integration

g

a (4.143)

Then we obtain:

,7-;..
I dx = • (N),

t_
(4.144)

where

N-_-_-_ IA(t)--B(t)l_dt. (4.145)
u

The value of the function q" (N) is easily found from tables of the Gaussian

error integral tb (x). Some values of q'(N) are given in Table 3:
Table 3

t
q"(N) t 0.5000 [ 0.3085 I 0.15_7 ] 0.0228 10.0013,5 I 3.10-s

The calculation of the probability of error is very simple. Knowing the method of

transmission (the functions A(t) and B(t)) and the intensityofthe interference(the quan-

tity S)), integral (4. 145) can be calculated, and the probability of error of the

ideal receiver can then be read off Table 3.

The probability of error of an ideal receiver is a characteristic of the employed

method of transmission. It shows how far. for a given transmission method, the ideal
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receiver can withstand interference, or, in other words, it characterizes

the potential noise-stability of this method of transmission In a real receiver this

stability is lower than the potential one. The difference in noise-stability of an ideal

and a real receiver is a measure of the perfection of the latter.

Let us apply the obtained results to telegraphy, employing pulses of both signs

of amplitude U and duration T. The quantity N in this case is equal to

N_U]//_. (4.146)

To increase the noise-stability larger values of N should be sought. By for-

mula (4.146), this can be obtained in our case by iLlcreasing the amplitude U and the
duration T and by decreasing the interference intensity ;;. It should be noted that

for S--.oo we have N--_0, i.e., Pert--*0. 5. Thus, atextremelystronginterference

the receiver responds correctly and falsely with equal pro_Jability. This means
that one could as well dispense with calculations of the received signal X(t) and de-

cide on which signal of the two has been transmitted by tossing a coin.
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Chapter Five

RANDOM FORCE ON A NONLINEAR SYSTEM

§ 26. Simplest Problem of Random Force on an Inertialess Nonlinear System

The simplest problem of a random force on a nonlinear system, which is
the subject of the present section, can be formulated as follows. Let a rare-

dora function x = x(t), describing the external force on the system be given.

As was shown in the second chapter, this means that for any n, an n-dimensional

probability density W(Xl, x2, .., Xn) is known, where the xl, x2, .., x n are the va-

lues of the random function at the times tl, t 2 ..... t n.

Furthermore, the determinate function y : f(x) is known, which characterizes the

nonlinear system under random force. The variable y is the response of the

system to the external force at some instant t; it is determined only by the magni-

tude of this force at the same instant and is independent of the previous course of

the process. This property of the system is characterized by the term"inertialess".

The problem consists in finding under given conditions the n-dimensional pro-

babllity density w(y I, Y2'" " 'Yn ) for the values Yl' Y2_ " " 'Yn of the responses of the

system at the times tl, t2, t ."''' n

Let us find the probability for the simultaneous fulfillment of the following in-

equalities:
. I !

y, -- _- dy, ..<y, ..<y_ + _ dy,.
1 I

y; -- )- dy, _<y, <_y; + _ dy,.
.................. ....,...

! . I

(5.1)

This probabttity is equal to W(Yl, Y2" ""_Yn ) dYl' dY2 "" ' dYn" Therefore, if

the Joint probability of fulfillment of the inequalities (5. 1) is known, we ob-

* *)taln immediately the required probability density w(y_, Y2 .... _Yn "

•. by a point of n-Let us characterize the set of n numbersxl, x2, . ,x n

dimensional space with the coordinates Xl, x 2 .... ,x n. We shall call it the repre-

senting point. Then it can be said thatthe responsesYl, Y2 .... 'Yn are functions

of the position of the representing point in the n-dimensional space.

All inequalities (5.1) are satisfied if the representing point is contained in a
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certain region D of the n-dimensional space. The probabL tty for the fulfillment of

these inequalities is equal to the probability for the representing point to be in the

region D. Therefore the required probability can be wrttt::n as

* e- d p . • ._(y_. y= ..... y._ 3,,Iv 2 . d),,,=

_t

== x:..... x.)dxt dxs , . . dx., (5.2)
_ v

D

with the integral taken over the region D.

The right-hand side of (5.2) can be calculated without knowing the boundary of

the region D by the following device. We introduce under the integral the factor

h (x 1, x 2 .... x n) which is equal to unity if the representing pout ts in the region D,

and equal to zero if it liesoutside this region. Then integra-ion over the region D can

be replaced by integration over the entire n-dimensionsl space and equation (5.2)
can be written as follows:

w(y]. y_ ..... y:}dy, dya ... dY, -'_

_oo

rl

= f.._..f _(x,.._,...... _.)_*,.,, ..... ,._d.gd,,. d.,,. (5.3)

The factor A can be explicitly expressed by means of the Dirichlet integral

,5,
--oo

which is equal to unity if = _ T <_ =,and equal to zero if "_i _ outside this interval.
We shall set in (5.4)

; (5.5)
==_dyt

and

T =y,--y; =/(x,)--y;. (5.6)

Then we obtain from (5.4)

Since

!

8! 1 J"°° sin (_ dyl'zl )= _- . ,, ,xpI& 1/(",)- Y;}]eg. (s_)
-oo

1 . =..} @,sl, (-_dv,. z,) .z,,

equation (5. 7) takes the form

dy_ f8, =--_. exp[jz/( x,)]exp[-- Jz, .t]dz,.

Yl

(5.8)

(5.9)

In view of (5.5) and (5.6) we conclude that the value of b 1 is equal to unity if

is within the limits defined by the first of the ineqaalities (5. 1)and vanishes
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if Yl is outside these limits. Analogously, it is not difficult to obtain expres-

sions similar to (5.9) forthe responsesY2, Y3 .... 'Yn ' The value of the factor A

becomes A(xt, xz ..... x,,)=_1_z ... _,j_

f fdy_ dyz .... ty.. "--'-" exp [] {zd(x I) +- z.f(x_) q-_2x_n . "''' . - ...

•" +-',/V,'_tI c'_pl-J(y,'_,+- _', +"" + y;,;_,,)],_z,j.q. a:,. _5.1o)

Substituting this result in (5.3) and omitting the no longer necessary asterisks

from the responses Y_I' Y_ ..... 3_n, we obtain:

, f "-_--fA,,,.,,.... ,,.,×•v (y,. y._..... Y.) = _ .....

X exp l--J (y_z, + y2z2 _ .. • + y,_z.)l dz_ dz2 •. • dz., (5. I i)

where
+cO

At.,,,,..... ,.)= f .C_..f expljl.,/_.a+_,/_._+ .
--oo

... + z./(x,,)]l • _,(x,, x, ..... x.)dx_ dxz . •. dx.. (5.12)

From equation (5. 11) follows that the function A(z 1, z 2 ..... z n) is the char-

acteristic function of the n-dimensional probability density w(y 1, Y2 .... 'Yn ):
+oo

-ao

X exp Ij(z,y, -}- zty, -'['- .. • + z,,y,)l dy, dy z . . . dy,,. (5.13)

The obtained relations (5.11) and (5.12) determine the n-dimensional probabil-

ity density w(y 1, Y2 .... ,yn) for the general case, and they represent the required

solution of the problem. From these relations the particular but important solutions

for n = 1 and n = 2 result automatically. For n = 1 we have:

+oo

l
f A(z)expl--Jyzldz, (5.14)(y) =

_rhere

+oo

A(z)=f expljz/(x)l _v(x)dx.
(5.15)

For n = 2 we have

where

-hi

Iw(y,.,,_=_ f f A_,.z2)exp|--j(y,z,-_,.Y_z,)ldz, dz.,

, (,.. z.)= f f expl] {,./(*.>+ z,/(x.)]l,_ (x,. x,) dx, dx,.

(5.16)

(5.17)

85



The direct application of the general expressions (5 11) and (5.12) or of their

particular cases (5.14) and (5.15) for n : 1 and (5.16) and ",5.17) for n : 2, leads

sometimes to cumbersome calculations. If to the functior fix) corresponds a single-

valued inverse function x = (_(y) of a sufficiently simple structure, then the following

device is more expedient. We replace in (5.12) the integration variables Xl, x 2 .... x n

by the new integration variables Yl' Y2 .... 'Yn" Then we have:

+w

<z,.,, ..... :,>f ?.-"=f 0xpu<,,y,+ +... + xA

-oo

X _' l_ (yJ, _ (yz) ..... _ (y,,)l _' (y_) _,' (v_) • • •

... _p'(y.) dy, dy= ... dy,. (5.18)

Combining the equations (5.13) and (5.18) we obtain the following simple

result:

(y. Y=..... y.) =
,= _: I_ (y,). _ (yD ..... _ (y,,)] ?' (y,) _' (y=)... ?' (y,,). (5. t9)

where _=IV(Yl). _(Y.,)..... _(Y,)] is the n-dimensional probability density for the

random variables x I, x 2..... xn under the substitution x l--_(yl), x2_ q_(y2).... ,

xn = q_(yn). For the particular cases (5. 15) and (5. 17) we obtain, analogously,

for n = 1

and for n = 2

w(.vl: :: IV(y)l _'(y). (5.20)

w (y,. Y2) = :: I_'(y,). _ (Yz)l ?' (YO ?' (Y2). (5.21)

It should be noted that when the domain of existence of y does not extend from

-oo to +cx_ but is smaller, the integration of (5. 13) and (5.18) has to be carriedout

over this domain, but the validity of the equations (5. _9), (5.20) and (5.21) is
not affected.

In many cases the exhaustive characterization of the statistical properties of

the response y, as given by the n-dimensional probability density w(Yl, Y2 .... 'Yn )

is superfluous, and it is sufficient to calculate the first f_w moments of the response.

To find these moments we proceed as follows. In the expression (5.15) for the one-

dimensional characteristic function, we expand the exp)nential factor of the inteo

grand in a power series:

exp Ijzf (x)l = i + J_-}-- ... -'4-- ,{jz]'l x)}"
__ _; --[- ... (5.22)

where

Then the function A(z) can be written as the followi'lg power series:

v_O

m,= f {l(x)}" _(x)dx.
--o0

(5.23)

(5.24)
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Relation (5.23) is the well-known expression of the characteristic function in

terms of an infinite set of moments. Therefore, relation (5.24) permits to cal-

culate one-dimensional moments of any order forthe responsey. Analogously, by
setting in (5.17)

,'xp Ij I zl/ (x,)-{- zz/ (x,)}l "=

Z (]z,flxO) _ {Jzi/(x,)l"

la,:ffi0 1=0

= g=_ -_ (jz,)V(jz.,)", (5.25)

we reduce (5.17) to the following form,

A(_,. _) = _,_ U,o_ U=,)". (5.26)

where the moments of the two-dimenslonal distribution of the response y are

given by:

rnl'*" = f f {#f(Xl)}** {]('rt)}" ¢4' (=,. ==)dx t dx 2- (5.27)
-¢m

Let us note the important particular case of expression (5.27) corresponding
to _t= v = 1:

÷==

m,= f f l(=,)l(x=),_(_,. =_a=, ax,. (5._8)

Similarly it is not difficult to obtain from the expression (5.12) the general re-

sult for a moment of any order of the n-dimensional distribution of the response.

In conclusion let us note a special feature which is typical of nonlinear trans-

formations of random functions. Whereas, in a linear system, any moment of

response is determined by the corresponding moment of the input of the same order,

in a nonlinear system for the calculation of a moment of response it is necessary to

know the corresponding probability density of the input, i.e., the infinite number

of the corresponding moments.

§ 27. The General Problem of Random Force on an Inertialess Nonlinear System

The method of analysis which was presented in the foregoing section, can

be also applied to the following much more general problem. Let k random inputs

be applied at k points of an lnertialess nonlinear system. We have to find the statis-

tical properties of the m responses of the system at its various points, responses

yj being related to the external forces by the equalities

y, =l, (x,,x,..... xk).

y.. =1= (x_, x: ..... xD,
(5.29)

...... . ....

y_ = 1_,(x,, x=..... =pb.

Each of the inputs x 1 is characterized by an n-dimensional probability den-

sity. Since in the general case all the inputs are statistically interdependent, their

joint k.n -dimensional probability density must be given.
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Foreachresponseofthesystemann-dLmenslonalprobabilitydensitymust
bedetermined.Invlewofthestatlsticaldependencebetweentheresponses,an
m. n-dimensional Joint probability density must be found for them.

The solution of the above problem does not present _ny fundamental difficul-

ties. But, in order to avoid cumbersome calculations, w_ shall solve it below for the

particular case of k = m = n = 2. The generalization of be results for any k, m
and n is obvious.

With the above limitations, the system of equations (5.29) reduces to

Y, =/, (xi, x,), |
y==A(xt, x,).I (5.30)

For the external forces the four-dimensional probability density

W(Xll, x12. 221, x22) is given, where the first index giw=.s the ordinal number of

the input, and the second shows to which of the time instants, tI or t2, the in-

put corresponds. It is required to find the four-dimensi )nal probability density

w(Yll' Y12" Y21' Y22 )' where the indexes have the same meaning as above.

Following the method of the preceding section, let us find the probability

for the simultaneous fulfillment of the following four inequalities,
• ! ° !

y,,- _dy,, _ y,, _< y,,-l--_dy..

l . l
Y_z -- g dY,z 4 Y,= 4 Y,z -_- "_ dy,,

• ] ° ]
Y,, -- _ dYn 4 Yzz 4 Y=, + $ dy==

• i ° I

Y,,-- "_ dYr, 4 Y== _< Y,2 -+- g dy,.,

which equals w(Y11, Y12' Y21' Ya2)dYlldY12dY21dY22"

(5.31)

The values Xll. x12, x21, and x22 of the external forces will be considered

as coordinates of the representing point in four-dimensional space. By analogywith

(5.2) we have for the four-dimensional probability denstt 3 of responses:

t

(y:,..Y,," Y_,' Y_') dyt, dy,, dy n dy.. =

xzz) dxlt dxzz dxti dxza (5.32)

D

In order to extend the integration of (5.32) over the tntire space we introduce

into the lntegrand the factor

tt = _t" _=" _=" _*' (5.33)

In order to obtain the co-factor _I we set in the Diz ichlet integral (5.4):

and

1
== _ dy,,

=y,-y;,=f(x,,, x,,)- y;,

(5.34)

(5.35)
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Then we obtain

4_

_,=_ f "."Is',/,('-.x._,)lo_rI-s-'::,ld,,.
-,oo

(5.36)

The co-factors 82, _3

sion (5.33) becomes

h (x n, xl,, x, I, xa_ )
+co

='" _ f f f f.p,,_,:,(,,.,x,,,+Oyt."dye,,dy_ ___ , :

-oo

+ :2f,(x,_.x_.)+ z,l,(x,,.x,,)+ zJ,(x,,.x_)ll×

X exp[--j(y;,z,--t- y_,z.,--k y',,z,q-y',,z,)]dztdz, dz, dz4. (5.37)

Introducing the factor A into the integrand function (5.32) and omitting the
asterisks from the responses y, we obtain:

tO(Yn, Yil, Y,,, Y,,) -_
+oO

__ I Af f f (zi. zi. zs. zi)exp[--j(y, iz,-_-

- oo

-k y,_zi -k y,,z_ -_ y=z,)] dz, dz, dz_ dz4, (5.38)
where

and 84 have analogous forms. Therefore, the expres-

A (z I. z,. Z3, z,)_-_
tco

_--- f f f fexp[] [Zifi(xn, x,(I-.{-.-zifi(xii, X,a ) +
- oa

+ zj,. (x,,. xl,) + zd, (x,i. x,,)}l ×
X w (xn. xiz, xil, xn) dxt, dxlz dxa, dxz,. (5.39)

Here the function A(Zl, z 2, z 3, z 4) is the characteristic function of the four-

dimensional probability density w(Yll , Y12' Y21' Y22 ):

4-o0

a(*,.*,.*,.*,)=f f f f_,@,,.y,:.y,,.y=)._,pu(,,y,,_-
-oo

"-{-"zo',, -+- z,y2, q- zD'=)] dyu dyi, dyii dy2a. (5.40)

If to the system of functions (5.30) corresponds a sufficiently simple system
of inverse functions

:'=¢Pi(Y" Y_') } (5.41)=- _:(Y,, Yz),

then the probability density w(Yll , YI2' Y21' Y22 ) can be found more simply in the

following way. Let us replace in equation (5.39) the integration variables

x11, x12, x21, and x22 by new variables Y11' Y12' Y21 and Y22" Then, in accord-

ance with the rule for changing integration variables in multiple integrals, we obtain:
÷_

,I(,,.=..:,. ,,>= f f f f ,,<pis(,,.,,,+ ,_,,+ ,_,,+ :,,.)l x
ilqll(,)#il' ,Jill)' qlll(J#ll' Yllt), qlll(#ll, #ll)l ll_lll _I1_)|

X Io,o,I#y,,dy,,dy2,dy,2. (5.42)
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whereD 1 and D 2 are the functional determinants

O, ----. o_(y., Y_I) _(Y., Y_) '
¢)y. Oy_

Oyt_ Oyn
Dr---- OV?(y.. y_) __r2()'w Y_)

Combining the expression8 (5.40) and (5.42) we obtain the fi_ne.1 result:

?z (Y,. Y.t). ?s (Yw Y_)] IDtDz !.

(5.43)

(5.44)

(5.45)

where w x is the four-dlmensional probability density o: the inputs, with the

variables changed as indicated in (5.45).

The transition from (5.39) to (5.42) and, consequently, the expression (5.45)

are correct if the following conditions are complied with: 1) the functions q l and

_P2 and their partial derivatives are continuous in the domain of integratLon; 2) the

product of the determinants DID 2 does not change sign in,this domain; 3) there is

a one-to-one correspondence between responses and exter_lalforces. The last condition

limits the range of application of formula (5.45) and of its possible generalizations

to cases in which the number of the inputs of the system is equal to the number of

its outputs (k = m). Formulas obtained by generalizatior of (5.38) and (5.39) are

free from this limitation.

To obtain the relations for the moments of the r,_sponse we write the

exponential factor of the integrand of (5.39) as a powel series:

exp I/{.v,l, (x., ._zi)"{- z_f, (x,.. x_) -I-
-i- zzf=(x., x.)-{- zJ2(x,., x..)}l =,

= Z ll,(x., x,,)l"lll(x_ _.)p(/_(x., x;,)) "lt_(x,_)l">_ (5.46)
_tl_._l

Then (5.39) becomes: X (Jzt)"(jz,)_(jza)'"(jz_)".

A (z_, z., za, =_}--

_t_._t_.,f (J,.',)"(jz.)"(_Z_)"(Jz_)". (5.47)
%. h* v_. u,

where the four-dlmensional moments ofthe responsesy I tnd Y2 are defined by

+co

= f f f f,/, ×
-oo

X lf, (x,,, xu)l" _ (x., x,,, x., xu) dx. #x. dx,, dxu. (5.48)

For the m_xed moment of the fourth order we ha_e from (5.48), for

..--f f f ff,(x,,, ..,)f, (.,,, ..)f,(.,., ×
-oo

× w(xt;, xt=, xst, x,,) dx_, dx,,dx,_ dx n. (5.49)
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Our problem has thus been solved completely in principle. It should

be borne in mind, however, that the application of the obtained general relationships

to specific cases meets sometimes with considerable computational difficulties.

_28. Random Processes in Inertial Nonlinear Systems

The results of the two preceding sections lead to the conclusion that the

solution of the problem of random processes in inertialess, nonlinear systems

does not present, in principle, any difficulties. But the calculation of the

moments of the responsels much more complicated in such a system than in an in-

ertial linear one, as much more subtle features of the input have to be taken

into account.

The difficulties increase sharply if the nonlinear system possesses inertia.

The reason for this can be readily grasped by taking into account that the behavior

of such a system is described by a stochastic differential equation, or by a system

of such equations, and considering further that at present there are no general

methods of solution of nonlinear differential equations, whether for random func-

tions or for determinate functions. Owing to this, the theory of random pro-

cesses in inertial nonlinear systems is at present still in its initial stages.

The most general problem concerning a random process in an inertial nonlin-

ear system with one input and one output (for definiteness we shall consider below

only such systems) is the following. For any n, the n-dlmensional probability den-

sities of applied input are given: it is required to find the corresponding multi-dimen-

alonal probability densities for the responses of the system.

Such a problem is already difficult for an inertial linear system (with the ex-

ception of trivial cases, when the input is normally distributed, or when there is no

statistical dependence between values arbitrarily near in time). Far from being

complete, the results hitherto obtained are of only preliminary character (see for

instance, /25/). For inertial nonlinear systems even such results are lacking.

The problem of random processes in nonlinear inertial systems ls substan-

ttaUy simplified if the external force is uncorrelated. In such a case the Fokker-

Planck equation can be used for its solution.

The Fokker-Planck equation was obtained while developing the theory of the

Brownian movement. A rigorous derivation of this equation is given in the work of

A.N. Kolmogorov /26], a simplified derivation is contained in the book of

M.A. Leontovich ]27], in which it is called the Einsteln-Fokker equation. The

method of applying the Fokker-Planck equation to the analysis of random processes

in nonlinear systems is shown in the work of L. Pontryagin, A. Andronov and

A. Vitt /28/.

By using the Fokker-Planck equation a number of investigators obtained im-

portant results concerning random excitation of tube oscillators. The first results in
this direction were obtained by I.L. Berstein /29, 30/. Along with the works of

Berstein, the works of G. S. Gorelik /_l/ and S.M Ry_ov /32/ on the sue sub-
ject should be mentioned, as well as the article by P.I. Kuznetsov, R.L. Stratonovich

and V.I. Tikhonov ]33/. The same problem was solved in a different way by

I.S. Gonorovski /34/.

Without belittling the great importance of the results obtained by the above

authors, it should nevertheless be borne in mind that the case of a nonlinear system

under uncorrelated action is far from exhausting all the important physical and

technical problems relating to random force on nonlinear systems. Thus, a
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further search for methods of analysis of random processors in nonlinear inertial

systems Ls necessary.

The sLmplicity of the laws for the transformation of moments suggests that

the search for laws of response distribution be abandoned and that we should

be content with the calculation of its moments which, in many practical cases, give a

sufficiently complete idea of the random process. But this sLmpllfied formulation

of the problem, which leads to simple solutLons Ln linear problems, turns out to be
rather cumbersome for non]Lnear systems. This is due to the fact that, in contrast

to ILnear systems, where any moment of the response is determined by a moment

of input of the same order, in nonlinear systems any moment of the response

is determined by an infinite number of moments of the inpu:, as was noted at the

end of $26 with respect to inertialess systems. Therefore the expression for any

moment must have the form of an infinite function series. Similar results were

obtained by V.S. Pugachev /8/, as well as by P. L Kuzletsov, R.L. Stratonovich

and V.I. Tikhonov / 35/.

While the methods of solution of the problem of calculating the moments of

the responseof the system as given by the above-mentioned investigators give, in

prLnciple, accurate solutions, they are very cumbersome, which greatly reduces

the possibility of their practLcal application.

Itfollows from the above, that, when solving such problems one often has to aban-

don the use of some general methods of analysis, and one has to solve each

problem approximately, by applying special methods, adapted to the peculiar fea-

tures of the problem. As examples of such an approach to this question we mention

the works by L.S. GutkLn /36/ and V.I. Tikhonov /37, 38/.

In conclusion, a particular class of inertial nonlin,.ar systems should be

mentioned, the analysis of the random processes occurring in which made by

comparatively simple means. These are systems consisting of two mutually

independent units in cascade connection, the first of whic]_.being inertialess and

nonlinear, and the second Lnertial and linear. We call a ccnnection "cascade" if

the output of the first unit Ls connected to the input of the s_cond.

In such a system the random function, equivalent t# the input, is subjected

first to an inertialeaa nonlinear transformation, and then to a linear inertial

one. Knowing the distribution law of the input to the first, and using the relation-

ships of the present chapter, the moments of the response on the output of the first,

i.e., input of the second unit can be found, and then, by thl methods of the third

chapter, the moments of the response at the output of the a ._cond unit can be calcu-
late d.
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Chapter Six

SOME NONLINEAR PROBLEMS IN THE THEORY OF RANDOM PROCESSES

§29. Action of Fluctuation Noise on a Detector with Exponential Characteristic.

In many cases the actual volt-ampere characteristic of a tube diode is well

approximated by the exponential function

l= 10,°_, (6.1)

where i is the anode current of the diode, u the voltage on its anode, J0 the anode

current at u = 0 and a is some constant parameter.

Suppose that a diode with the volt- ampere characteristic (6.1) is under the

action of a fluctuation noise u (Figure 19). It is supposed that the noise voltage is

stationary and has normal distribution with the mean square o 2 , i.e.
u

I *
w(u)=--• _'".

]/'_%
(6.2)

Figure 19.

J

ff

1
Diode under fluctuating voltage

We assume the normalized autocorrelation function of this voltage to be of
the form

k,, (_) = e-" ¢o$ wo_. (6.3)

Expression (6.3) corresponds to formula (4.31) for the second moment of the

fluctuation voltage in an oscillation circuit, connected to a source of correlated

random electromotive force. It is required to examine the statistical proper-
ties of the current in the circuit of the detector.

As the process is stationary, the d.c. component of the current in the circuit

of the detector is the first moment of the current and is independent of time. Set-

ring in (5.20) v = 1 and taking into consideration (6.1) and (6.2) we have
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,#oeisl _ t aU
--¢a_l

÷ai

___fJa exp I uiq-au]du.--_ (6.4)-- VN,, _

From the table of definite integrals /6] we take the :ollowing formudaz

+so _ V_f e-i_+qZdx __-i . (6.5)
-ol

Then. after some simple transformations, we obtain from (6.4)

I 2

j_ = joe_-e%. (6.6)

The increase in the d.c. component of the current urder the action of the

noise voltage is equal to

,.,=, _,o=,o[,..'-'-_ ,]. (e.'O

Let us find the second moment of the current. For that purpose we shall

write down the expression for the two-dimensional probability density of the noise

voltage:

I i?-- 2t,,uluI + ,,_]l Z *ul(ui, u,) 21till tl/.i_._._iii exp 2%(I--t,)
(8.8)

where ku = ku(X ) is the normalized autocorrelation function of the voltage acting on

the detector. Now, in view of the formula (5.24), we can write

4-00

.;,,_->=ff x,,,o.,x_. '
_,,:,VT:-_-_,x

f ' (,,',- 2h..,,,,+ ,,I)]d,,,d.,=,X exp
t 2,:(, -,e.)

J
+oo

: _ r r .I _..,]#.,x
• - "-0_ --¢o I •2-', _ J e,p [ _.('_,:)

+oo

[ , +(,.",.. +,?,,1,,,. <0.,>x f ..p ,,:(__,,) ,',t'-'_J , J
-so

The calculation of the inner and the outer integrals in this expression is easily

done by applying (6.5). and gives the following simple result:

• e2o 2

m_ '_ (Q = ._ exp [al_ (I "l- k,,)l---_ Ja.e u .. (6.10)

At • ffi 0 we have k : L, endwe obtain for the meanstuare of the current
U

the expression
•l

,2 a ettet=J=e . (6.11)

The mean square of the noise component of the currer, t i.n the circuit of the
detector is determined as follows:

.i°=.:-,'.=,'-(e"j'"-'). (6.l_.,
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Let us examine the expression (6.10) for the second moment of the current.

Replacing the exponential factor of this expression by a power series and taking in-
to consideration (6.3) we obtain

COS

n!
.-o (6.13)

By expressing the factor co$" _0= in each term of the series (6.13) as a sum

of a constant number (for even n) and cosines of multiples of the angle, we find

that the moment m_'b(_) contains an aperiodic component, which decreases with in-

creasing _, and damped oscillation components of frequencies w0. 2we. 3w o ....

From the point of view of the detection process, the aperiodic component, related

to the terms of the series corresponding to even values of n, ls of fundamental
interest.

Let us isolate this component. As well known, the constant term for

2m 22m(m ! ) 2.cos x is equal to (2m)I/ Therefore, the above-mentioned component

is obtained from (6.13) in the following form,

_ (_2,1t-,,)+,,,
m_O

(6.14)

Taking Lnto consideratLon the weLl-known relation from the theory of cyllndrL-
ca/ functLona

MmO

(6.15)

where /o(z) is a modified Bessel function of zero order, we can write (6.14) in a

more compact form:

a"_ (') = _" Io(.'o_e-").Z,per (6.16)

We shall find the spectral density of the current, which corresponds to the

aperiodic component of the moment in the following way. Applying the formula

(3.62) to individual terms of the series (6.14) we obtain

•_- 2._ (mr)I, cos w', d_ ----

o (6.17)

2 j_ (.%)" 2m,.
= ; _ 4m=o_+ .2 •

Therefore, the complete spectral density, as determined by the aperiodic

component of the moment, becomes

Ill) = I

(6.18)

It follows from this expression that the considered component of the spectrum
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of the current in the detector circuit has a maximum at w == 0, and decreases mono-

tonicallywithincreasingfrequency. It can be called low-frequency component. It

appears as a result of rectified noise voltage.

Analogously, we can single out from the series (6.13 damped oscillation com-

ponents of the spectral density with maxima in the ranges c,f _0, 2w0, 3wo ....

respectively. We note that the spectrum of the input voltage has its only maximum

Ln the frequency range wo.

The appearance of maxima of the spectral densit/ of the response for

harmonics of the frequency of the input spectrum maxin um is characteristic

of random processes in nonlinear systems. The aperiodic component of the

response spectrum can be missing in certain cases; this occurs if the character-

istic of the nonlinear element is an odd function.

§30. Statistical Properties of the Noise Voltage Envelope

at the Output of a Selective System

It has been shown tn S 21 that the noise voltage at the output of a selective

system, tuned to the frequency w0, is an oscillation of freluency w o, modulated, at

random in frequency and phase. In some cases, and partl, ularly in analyzing the

action of such a voltage on the amplitude detector of a rad|o receiver, it is impor-

tant to know the statistical properties of the random amplilude of this voltage. This

question was considered in the publications of V.I. Bunimcvich /4/ and S. Rice /39/.

We give in the following an account of the results stated in these works.

The instantaneous noise voltage on the output of a linear system is expressed

by formula (3.26), Ln which, by limitlng ourselves to the c=msideration of a station-

ary random process, we assume the lower integratLon limit to be equal to -- to,

and the upper limit to be tI = 0. This last assumption can always be made by choos-

ing a suitable time origin. Let us denote the integratiol variable by t'. Then

(t')_(_t')dl'. {6.19)

-,J$

By changing the integratLon variable:tffi-t', we obtair

u .... (0) _- Juan (t) _(t) dt. (6.20)
0

Let us analyze a single oscillation circuit, conne._ted to a source of

noise electromotive force. More general results can be obtained analogousl_
We shall consider them later on.

The impulse characteristic of a series oscillation cil cult can be expressed as
follow s:

|(l) _ m e-.t S/n mlt _ w0e-_ S/n mot. (6.21)

with notations as in $ 21. This result can be obtained in v_rious ways. In particular,

if the transfer ratio operator of the circuit is obtained "rom (4.22) by the substi-

tution Jw = p, and considering that the transform of the unit impulse function

is equal to unity, then the inverse transformation of the product of the above -mentioned
transforms leads to (6.21).

96



Substituting (6.21) in (6.20) we obtain:

uo_t (0) = fain (t) U_oe-'t sin wot dt. (6.22)

0

As had been shown already in _ 21, the noise voltage at the output of a selec-

tive system is the result of superposition of infinitely many damped elementary

oscillations, which are caused by elementary impulses of the input noise. A single

elementary oscillation

duout = ul. (t) dt • Wot-'t sin mo_ (6.23)

can be represented by a vector of length ui, (£)d£ •Wo¢-'r and of phase t_'

(Figure 20). Expression (6.22) gives the projection of the resultant vector, repre-

senting the total osculation, on the abscissa. As it is the length of the vector which

is being considered, one has to write down the expression for its projection on the

ordinate. This is equal to

Pout (0) _--- ffui. (t) =0e -'_ COSwo t dr, (6.24)

0

The projections Uou t and You t are random variables. If the input noise is un-

correlated, as will be assumed in the following, these projections are distributed

normally. The normal law applies also to correlated external force having a nor-

mal distribution. The mean square of the projection Uou t can be easily computed,

using equation (3. 132). Assuming in it • _ 0, and noting that _._:_w0, we have:

Figure 20.

0==----Sfl=oe-= gn =otls ate, ___41"=o.S.

0

Vector of the elementary noise voltage at the

output of a selective system

(6.25)

The same result is valid for the mean square of the projection of Vou t. Con-

sidering the equations (6.22) and (6.24) as a set of two integral transformations of

the random function, it is easy to calculate the mixed moment of the projectLons u

and v. For this we make use of equation (3. 153), in which we put t 2 = 0, denote

t 1- t 2 = t 1 = z and change the sign of the integration variable. Then this equa-

tion assumes the form:

me,") (_) = S_h (t + _) _, (t) dr. ( 6.2 6 )

0
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In the present case of •-_ 0 the impulse characterist c _a(O is determined by

equation (6.21), and _(t) is

_2(t) = =oe-" cos._. (6.27)

In view of the above, we have:

m_ _') (0) = S/llot-_a =in wo tl [woe-at co$ =otl dt ----

0

= ½s.lf .-..,.,,2..,,, ="s
0 4 =z+u_ . (6.28)

From (6.25) and (6.28) we obtain the correlatLoncoeff_cient between u and v:

p,,,(o)= _ = _+--/U_"

Since a _ WoWe can assume

(6.29)

puw (0) = O. (6.30)

in other words, the projections can be considered as statistically independent of

each other.

After this preliminary work we can proceed to the stzdy of the distribution law

of the amplLtude U of the fluctuation oscillation, which is connected with the projec-

tions u and v by the nonlinear relationship

U = ]/ u'_.-_-tF ". (6.311

For the solution of this problem we shall use the rel=ttons which were obtained

in S 27 foran inertialesssystem with severs/ inputs and outputs. The present case

can be considered as having two inputs and one output, and it is required to find the

one-dimensions/ distributLon of the response. Equations (5.38) and (5.39) reduce

to

f (6.3=)
--ou

with

+¢IB

A(, = ff ,xpl/z./(x., x,,)l _(x., rz,) dz. dx.,. (6.33)
-e=

In our case we have Xli = u, x21 = v, Y11 = U. ThE two-dlmensional Joint

probability density for the projections u and v will be

_÷_

,_(,. _) = t(=),,(_) = _---te --_" .

Substituting (6.31) and (6.34) in (6.33) we obts/m

--O0

(6.34=)

(6.35)
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Herethe integration is performed over the entire uv-plane. We note that

the lntegrand of (6.35) is constant for U = _ _ _ ¢onst. This allows to replace

integration with respect to the coordinates u and v by radial integration, i. e., sum-
mation over annularbands of radius U and width dU, centered at the origin. Because of

the constancy of the integrand, the integral with respect to a single ring ls equal to

2=U dU¢-_ lrfmff. (6.36)

In view of (6.36) we call expresJ the characteristic function A(z) as follows:

A (z) = ; _ #-I_¢#ltdu. (6.37)

o

Combining (6.37)with the definition of the characteristic function

4co

A(z)-- f .(x) dz (6.38)
-go

and considering that the amplitude U can have only positive values, we conclude

that the amplitude probabUity density is equal to

uJ

e-_ (6.39).(U)

The same result is obtained by substituting the value (6.37) of the character-

istic function in (6.32) and integrating. But in the present case we succeeded to

carry out the calculation by a much simpler method.

The distribution law is expressed by (6.39) is called Rayleigh's law: the

corresponding relation between the probability density w(U)and the amplitude is

shown in Figure 21.

Figure 21. Probability density according to the

Rayleigh distribution law

Let the analyzed noise voltage act on an ideal amplitude detector. We call

an amplitude detector ideal if its transfer ratio is equal to unity and if it re-

produces on its output without distortion the envelope of the modulated oscillation,

acting on its input. The d.c. component of the voltage on the output of the detector,

which is equal to the mathematical expectation of the amplitude U, is expressed as

follows..

e==.,Ivl= u..(V)dU= . j (6.40)

o 0
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In tablesof definite integrals /6/ we find the follo#ing formula:

e- _'x 2a - (2a -- I)!! ./-_d_'=_--_-v 7"
0

(6.41)

Using a particular case of this formula, with a = i, we obtain:

E=_---V _a. (6.42)

Let us find the mean square of the amplitude U, whic_ is at the same time the
mean square of the voltage at the output of the ideal detect3r. We have:

a_=o_ /U'w(U)dU _I f u'e-E'dU. (6.43)

o 0

For the calculation of the integral (6.43) we shall use the following formula

from the tables /6/:

f "e-l_c.x_,.,_ t dx --_ 2pa+----7 . (6.44)
0

In our case a = I, and therefore

o_s= a_= 2_. (6.45)
The mean squaz'e of the noise component of the voltag{ output from the detector

is determined from the formula (6.42) and (6.45) as follows

o" E. =E, =a_-- o_ = 0.43oL (6.46)

Thus, all the more important characteristics of the random amplitude U,

which could be calculated from its one-dimensional probability density have been
obtained. Of course, the first and second moment (6.40) m d (6.45) could have been

found directly, without finding _(U).

Let us consider now the statistical dependence in the envelope of the noise

voltage. For this, _e shall determine the two-dimensional probability density for

the amplitudes U and U_. separated by the time interval _. T_m relationbetweenthe am-

plitude U and its projections is shown in (6.31). Analogousy, we havez

As was shown above, the projections u and v in (6.31) are statistically inde-

pendent. The same applies to the projections uT and _T. The statisticaldependence

between u and u_ is characterized by the moment (4.31)_wh0.nce we obtain

P'_'l (_) = e-": COS O_,u":. (6.48)

We have to investigate the statistical dependences bet veen the following pairs

of projections_ v and z,_. u sndz,:dwandu_. Applying (6.26) md (6.27) we can write for

the projections rand _
co

m_z_',_ (z) = S f [mue-" (t+,_ cos ,% (t-Sr:)! [,%e -,t cos,,0/1 dr. (6.49)
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The calculation of the integral does not present any difficulties. Since a _ w0.

the result can be taken as equal to

whence we obtain,

i.e.1

1 "_0-
m__'_ (') = T-_- se-"cos "o'.

tn view of (6.25) and (6.48):

m__') (0)

P_, (,) = _ = e-"¢m ®o, = _, (_).

Analogously, we have for the projections u and v_:
OD

m'2°-'(,)=s d,=
0

(6.50)

(6.51)

J (6.52)
=/--_ Sc-_'dn .o,.

P,_, ('0 = e-_' Sin wO'¢, (6.53)

and for the projections v and UT:

m__')(_)= S fl-oe-°('+')co,.o(t+_)llwoe-",J.®Jldt =
0

? (6.54)
-- ] %e -_sinWo%

4 =

whence

Pr., ('_) _ -- e-" sin Wo',. (6.55)

Henceforth It will be convenient to use the following notations for the expres-

sions (6.48), (6.51), (6.53) and (6.55):

P,_. = Pt-z,,= _ (') COS t,o_ _---_ (_) COS _. (6.56)

P,_,= -- P,,_,= # ('0 sinu,o.:----# (_) sin_. (6.57)

where _ (1:) ls the envelope of the normalized correlation function of the instantane-

ous noise values, which for a single oscillation circuit is equal to

$(9-= e-"' (6.58)

Now we can write down the four-dimensional probability density of the pro-

jections. As well known, with a normal distribution law the n-dimensional proba-

bility density can be expressed as follows /40]:

w(x t.x z..... x_)_-

•" d,J-Z

where D is the determ[nant of n-th order:

Pit PI_ ...Pro [

o= :'?,-. 1, (660 
PmP,.z.- .P,, I

Dlj is the algebraic complement of the element Pij of this determinant, Pij being

the correlation coefficient. For [ = j we have pi,J = 1. In the present case, putting
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xI =u, x2=v, x3 =u_, andx 4 = vT, we have:

1 0 _,coeP _,.mp ]

0 ! - _,stnp _cosp
D= #coep --_,JniS I 0 " (6.61)

4'st. p 4'cos p o I

The calculation of D and of its algebraic complements D. gives the foUowtng
t3

results:

D -----(1 -- _)2, (6.6s)

D,= _ D== _ Ds_ _ D.s _ O, (6.64)

D,_ _--D=l = D=, _--D4= -------_/(t --_) cos_. (6.65)

D=, = D,I = _ D=s = -- D== ------- $ (I -- $=) dn p. (6.66)

With these results the gener=l expression (6.59) becomes:
I

"W(U. I'. U,, V,) = 4nI0411 __}exp

-i-u,+' u,--' 2_lcospL.",+wO-f-aop(ae,--vaOlji (6.67)

The characteristic function of the probability density ,_f the amplitudes U and

U t can be expressed thus:
._oo

A(.,, ,_-_ f f f f .,,plJI,,,V ,'--_-_-_-,,_lJx
-go

X _ (u, v, u,, t,,) d. d_ du, dr,. (6.68)

by analogy with expression (5.35).

Let us introduce new integration variables, which are connected with those of

(8.68) by the relations

.=Usln0, v---_U¢os0, u,--_U, sin0. ¢tt=:U cos0 '. (6.69)

Then, using the rule for change of variables in multiple integrals, we give to
the characteristic function (6.68) the form

-_oD

UU,
A(,..,,)_- f f.p ,j(,,u +,,,u.)].._(,_ +,)×

0

I s tx-p[- + u,)] ,,,,x
×f f , _,,u, p,]do,_..exp [_ cos (e-- O,--

The calculation of the inner integral is simple, in vie_ of formula

(6.70)

2a

f eo _o,_._-b_dx = 2,,Io(a).
o

(6.71)

This formula is easily obtained by replaclng the exponc ntia.lfunction in the

integrand by a power series, by integrating by parts and corr paring the obtained re-

sult with the power series (6.15). Using expression (6.71), ve obtain:
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21t 2t

f f ,,-,r _uu" _o"(O-- O,-- P)]W_d', =r L.' (I - _'}

o e . =. r ,uu, ] (6.72)

which allows to write (6.70) in the form
@co

flU,
_(,,.z_--f f expu(=,u+ _,u,),_×

-oo

_ r #UU, 1 x U2

Comparing (6.73) with the definition of the characteristic two-dlmenmiona/
distributionfunction

+cO

z,)= f f explj(z=U + z=UJI,,(U. U,)dU dU,. (6.74)A(z,,
-oo

we obtain the following final result-"

,,_, ,o[ ,u._ ].p r g°+",' 1,_(u. uo= _'0-_:) o,(i-_,} L--_%" (6.75)

V the time interval T is very long (_ --_ oo),then _(¢) --_ 0 and with 10(O) = ] we have

I

.(u,u,_=§,-,._.",.-,-_- (6.76)
01

i.e., (6.75) becomes a product of one-dimensional probability densitiesof the
kind (6.39). This was to be expected, as at •-_ cothe ampl_tudes U and U r become

statisticallyindependent of each other.

The mixed moment of amplitudes U and U_ can be found [n the following way."

co co

,.,_,(.=ff.,.,:,,(.,..>...u.,
o o

where the probabilitydensity ¢_(U, U_ ) is expressed by formula (6.75).

":°',',=ff 'ol ]×
O 0

X,xp[ u'_u--_2"]audu,.2,,'¢I --,'1J

(6.77)

Thus,

(6.78)

The calculationof the integral (6.78)leads to rather tedious computa-
tions. They are contained in the monograph by V.I. Bunimovich /4/ and willnot be

repeated here. We give only the finalresult:

,.;o_('0= ='12E(I')--(I--,p).K(,DI. (6.79)

where K(4/)and E(_) are complete ellipticintegrals of the firstand second class,
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n/a

] "K(_) = ¥ l -- ,2 ain'T '

E(_) _-- f I/l -- _Zsin"T d T.
o

(6.80)

(6.81)

The mixed moment for the fluctuation component of the amplitude and, simul-

taneously, of the voltage at the output of the ideal detector*)ecomes, byvirtue of
(6.42) and (6.79),

m: (,)- o, (t - (6.82)

As complete elliptic integrals can be expanded into rapidly converging series
in terms of even powers of W, we can expect that expressloa (6.82) can be approxi-

mated with sufficient accuracy by a polynomial with a smal_ number of terms. In-

deed, the expression (6.82) can be very well replaced by the approximate formula

(if)
m=,. ('¢) _ == [0.39_' ('¢) -_- 0.04#/* ('¢)1. (6.83)

For tentative calculations the still rougher approximation

(_ (_) _ 0.43o=_= (_). (6.84)m&n

Can be used.

Results of calculation by the exact formula (6.82) at.d by the two approxima-

tions (6.83) and (6.84) show that the error Introduced by the formula (8.83) does not

exceed 1%. and can reach 10% with the formula (6.84).

In conclusion, let us examine the spectrum of the envelope or of the voltage at
the output of an ideal detector. Using the approximate fornula (8.84) and assuming

that the envelope '_ (=) of the normalized correlation function for the instantaneous

noise values satisfies the relation (6.58), as it does in the case of a single oscilla-
tion circuit, we obtain from (3.62):

co

f. ..o
o

(6.85)

For definiteness, the above analysis has been restricted to noise voltage on a

single osciUation circuit. But it can be easily seen that thle assumption determines

only the form of the function _(x). The rest of the obtained results can be applied

to any selective system.

In the theory of radio receptlon, in addition to the ahoy _.-considered problem,

it is also of interest to examine the statistical properties of the envelope when fluc-

tuation noise and signal of some shape are simultaneously a_*plied to the input of

the selective system. In such a case the analysis is accomp lshed by the same

means, but the computation turns out to be considerably mot e cumbersome.

$31. Statistical Properties of the Phase of a No se Voltage

at the Output of a Selective System

Phase fluctuations of a noise voltage at the output of a selective system are
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of interest [n the case when this noise acts on some phase-sensitive device. The

fo],lowing final results have been taken from V.I. Buntmovtch /4/.

We understand by the random phase of the noise voltage the angle formed by

the vector U+ which represents the random process, and the abscissa. This ran-

dom phase was already introduced in the foregoing section, (the angles 0 and _,

[n the expressions (6.69) and the following). From the fLrst pair of the relations

{6.69) we find that the nonlLnear transformation to be examined is, in the present

case, of the form

a

0= arctg_. (6.66)

Starting from (6.33) and (6.34) we shall write down the characteristic function

for the probability density of the phase as follows:

÷w
u'+ ue

ff ' ,..A(z)-_ exp arctg • 2-_=_e dudv. (6.87)

Replacing in (6.87) the integration variables u and v by the new variables U

and 0. we obtain

zt m

r =.A (z) = e-J_do • Ue-

o o

(6.88)

Applying formula (6.44) taken from the tables, for a = O we can transform

the equation (6.88) to

2_

A(Z)-- -/'e._* dO (6.89)
-- j 2_ "

u

Now, combining (6.89) with the definition (6.38) of the characteristic func-

tion of the one-dimensional distribution, we obtain

(0) = _-. (6.90)

Thus, all values of the phase between zero and 2_ are equalAy probable.

We turn now to the two-dimensional distribution of the phase. The correspond-

ing characteristic function can be written down, by analogy with the equation
(5.35), in the following form

4-e=

ffff " .,a(.,, .)= ¢xp[j{z,arctg gTt_zaarctg_07}] X.

X=_(u, v, u,. t',)dudvdu, du,, (8.91)

where the four-dimensional probabLlity density _(u, _ u,. v,) is determined by
formula (6.67). By changing in (6.91) the integration variables in accordance with
(6.69) we obtain

A(z,, z=)=

"" f?.UU,= f f explj(z'O't-z=O')ldOdO" 4=,_(!- ,i")i
0 0 0

[ _"P'I -- _)'t'_ ¢05 (§ -- "t -- _ ) V_'t "l'- {"J+_ }X exp -- _ dU dU,. (6.92)
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In the paper of S. Rice /39/ the following defitlite integral was computed:

ff xy . expi-- (xt + 2xy cos? + Y_)Idx dy ---=
@

I
-_ cosec ? (I -- ? ctg ?). (6.93)

and

If, in the inner integral of (6.92), the variables are c_langed

w v,' (6.94)

_/C05 (O -- O,r-- _) ---__ --_ -- COS?, (6.95)

is introduced, then its computation amounts to the use of formula (6.93). In view

of this the expression (6.92) assumes by simple transformations the following form:

2= h

z.)--f f expMy(z.0+ d0,8.×A

O 0

i _ _ -j. (6.96)

Combining (6.96) with (6.74) we obtain the two-dimenst )nal probability density

of the phase,

_(0, 0,)= I--_b'_ 1.._ K--arccos_]}4s_ [ 1--_ +_ tl--q-*j'_, ' (6.97)

where the quantity _ is determined by equation (6.95). We recall that in the

considerations of the foregoing section, on which the calculations preceding

(6.97) were based, it was assumed that ts _ t=. In other wor_s, the phase 0 corres-

ponds to a time moment which follows the phase 0 T after an interval _ .

If it is assumed that_ --# oo, than _?(_) --+ 0, vl--_ 0and th{ probability density (6.97)
at the limit assumes the value

_(0, 0,)= t t2"_" _"_x• (6.98)

Comparison of (6.98) with the one-dimer_sional probabli .ty density (6.90) shows

that at • --_ oo both phase_ become statistically independent o_ each other, as was to

be expected.

Let us consider the statistical properties of the phase 6_ when the value

has been fixed at some time moment, which is being taken as the beginning of the

reading. For this, we must find for 0 the conditional probability:

w (0.e,) (6.99)

In view of expressions (8.90) and (6.97) for the two probability densities enter-

ing in (6.99) we obtain:

--_ [1_-_ .--.rccosq_to(O, I O) = ÷_ (i __ _1;)% . (6.100)
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As follows from (6.95) the quantity _l satisfies the inequality 0 _ _ 1. It la

easily seen that the probability density w(8, ] 8) increases monotonically and bound-

lessly as _ approaches unity.

At fixed interval • the maximum of the quantity q and, therefore, of the condi-

tional probability w (G, Ift) occurs at cos (0---O, _ _)_ [, which corresponds to the

condition

e -----O,-t- _ = 8, -f-_o_. (6.1o 1)

Expression (6.101) gives the most probable value of the phase 0, if at the

time moment taken as the beginning of reading the phase were 0,. From the right-

hand side of (6.101) a multiple of 2.-.was excluded, since, at : == 0, it is natural to

require that 0 _-8,.

As the cosine is an even function, deviation of the phase 8 from its most

probable value (6.101) causes a decrease of the probability density _(0_ I0), which

is independent of the sign of this deviation. Thus, the conditional distribution of the

phase O has an axis of symmetry, in a position defined by (6.101).

As well known, in any distribution which has an axis of symmetry the most

probable value of the random variable coincides with its mathematical expectation.

Therefore, expression (6.101) gives at the same time the mathematical expectation

of the phase at the moment _, whence follows that the vector representing the ran-

dom process rotates in the mean with the angular velocity w0" This conclusion

agrees fully with the notion of the noise voltage at the output of a selective system

being an oscillation of frequency "o with amplitude and phase changing at random.

We find the height of the maximum of the conditional probability density from

(6.100) by substituting "q--_:

--¢ _l-_ " (6.1o2)

At small values of _ the envelope _(Q of the correlation function of the in-
stantaneous noise voltage is near to unity and the probability density Wma× (8, ] 8)

is large. This means that the possible values of the phase 8 are mainly concentrat-

ed near the most probable value (6.101), t.e., the dispersion of the phase is insig-

nificant. As _ increases the height of the maximum drops and the distribution be-

comes diffuse--the dispersion grows. At _--_ co we have _(_)--_ 0 and the distri-

bution of the phase becomes uniform:

--_-. (S.lO3)

itwas assumed above that the phase 0 and (}_ are randomvariables with pos-

sible values between zero and 2w. Intheexpression(6.100)fortheconditionalproba-

btlity this corresponds to fluctuations of the phase 0 about its mean value within the

limits of _ _and _ r,. Since the selective system is completely indifferent to the

phases of the oscillations occurring in it, the phase can deviate arbitrarily far and with

any probability from its mathematical expectation. The applied method of analysis

is such that when the phase passes the limits £-_ztheterms ± _ are automatically

dropped; if this is not done the phase strays from its mean value similarly to the

Brownian particle considered in § 19.
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§ 32. Statistical Dependence Between Envelopes ¢.f Noise Voltages

at the Outputs of Two Selective Four-poles wit_ their Inputs
Connected in Parallel

The solution of this question is of interest in cases "vhere the outputs of two

selective four-poles, with their inputs connected in parallel, are connected to detec-

tors whose output voltages are added together in some w_ y. Such systems are of-
ten encountered in FM discriminators of radio receive_ s, which are used for auto-

matic frequency control of the heterodyne and also for ratio reception of frequency-

modulated oscillations. The rectification of voltages from the outputs of two selec-

tive four-poles and their subsequent addition is also encountered in diversity recep-

tion, where, to overcome fading, the reception is simultaneously done by two receiv-

ers, tuned to different frequencies, whose signals are added together after

detection.

In order to avoid cumbersome calculations only a staple particular case will

be considered below, in which the four-poles, tuned to th,: frequencies ¢o1 and '"2

respectively, have similar transfer characteristics of the form shown in Figure 22.

We recall that by the transfer characteristic of a selecti _e system we mean the

law of steady state of the amplitude of its output voltage upon instantaneously

switching on a sinusoidal input voltage of unit amplitude.

The envelope of the impulse characteristic is the time derivative of the trans-

fer characteristic and has in our case a rectangular form (Figure 23). The high-

frequency complement of the impulse characteristic has the same frequency as the

natural frequency of the selective system, as wa_ alread:, shown in §30. The phase

of thLs complement is not essential for the following. W_ can write, therefore, the

equations for the impulse characteristics of four-poles a_ follows;

sin rest (0 _._ t -_ a),
4

_=(0 = < 0 (t > a),

Ko

_, (t) = ,% 0 (t > a)

(6.104)

(6.105)

The noise voltage at the common input of the four-;)oles will be supposed to

be uncorrelated. We shall analyze the statistical depender ce between the envelopes

at one and the same time moment. This allows to compu:e the mean square of the

noise after addition at the outputs. If the spectrum of th_ = resulting noise is also of

interest, then one has to examine also the statistical dep._ndence between values of

envelopes separated by some interval t . Such a generalization does not present
substantial difficulties.

The projections on the coordinates of the vectors -epresenting n¢ise voltages

at the outputs of the four-poles are by analogy to (6.22) =rid (6.24),

a

=,= f .i. =,tdl. (6.lO6)
o

l[Jl = I =in (t,'_ COS --l' d'. (6.107)

o

r!

..-- f .,o ,,: dl. (6.lO8 
o
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,.,,---f -,o<t)_ _o,=g,_t.
o

(6.109)

__

_oo,/t/

7
I

l

,_(t/

l_il_ .... t

"1

Figure 22. Transfer characteristic

of a single selective four-

pole

Figure 23. Impulse characteristic

of a single selective four-
pole

As already established in §30, the random variables u 1 and v 1 can be consid-

ered as statistically independent. The same applies to the variables u 2 and v 2.

We calculate the mixed moment for the projections u 1 and u 2 with the help of

equation (6.26), assuming in it z = 0 and considering that I wt-- w=J _ °h-'_s2:

o ,

m*"''_ = sf _ ! K2,sina_=" _ 'sinc_ltstnw=tdt_S a_ A= ' (6.110)
(i

where Am _ m= -- t,*2. If we put At. _ 0 then both four-poles become identical, and

(6. 110) gives the value of the mean square of the noise at the output of each.

=7 "T'"

The correlation coefficient between the projections u I and u 2

sin Awa

Analogously, we find:

(6.111)

is equal to

(6.112)

i,e,_

fl 2

.a_=,.,.., Ko Ko= sin_=a-- sf _ ¢o,=,,(o,=_at_._ s _- --a=-.'
o

For the projections u 1 and v 2 we have:

(6.113}

(6.114)
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• .,o_'_ I ,,: I - coss..a
mq,"'''' ---- .5 / _ sin".,,t cos "'z_'#t _ -- --iF.5 _"0

o

whence we obtaln_

(6.115)

I --t_ A_ (6.116)

The expression for the correlation coefficient betw,,en the projections u 2

and v 1 has the form:

I -- cos A_

Pm@'_ A_l (6.117)

After having found all correlation coefficients between all projections we

have to make the calculations analogous to those of S30. "[he determinant D (6.60)

has in the present case the form

where x _ A_a.

D _

sin x I -- cos z

x

0 I I -- cm x _tn x
x

stnx I -- cosx I 0
x x

I -- COS X Sln____XX 0 l
X x

The computation of the determinant (6.11_) gives

(6.118)

2 z

The algebraic complements of the determinant ({. 118) are

D,, ----- D_ _ D3s = D,_ : I -- 2(I -- cos x),

DI2 = D:, : D:, = D4s : O,

Dt_ : D. = Dz, = D,: --

Di 4 = D4, ------- D..s = -- D.--

(6.119)

(6.120)

(6.121)

slnx [I 2(!--cos x)],--_ (6.122)

I--cos_ x[l___(l__co|x)]. (6.123)

Using equalities (6. 119) to (6. 123), we can writ, down the four-dimension-

ell probability density of the projections, in accordance wLh (6.59) as follows:

_(u t, t, I, u:, f):)= I Xr"
[

4z_41 | -- (I -- cOS x)

| {.:+ +.:+-x-_ ,,,[|-_(,-,o,.)1< < (6.12,)
- (.,.,+.,-0+'-7" ",',']I].

The characteristic function of the two-dimensional probability density for the

amplitudes U 1 and U 2 is expressed analogously to (6.68). By introducing new vari-

ables

us=Uidn01, _l=U, cosO,, us=U_sinOs, o: = U= cos 0z, (6.125)
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we obtain " z UIU
A(:,. "0.,. f fexptj(,,u,+ _JO_-_ x

o
!

X exp [ 2o,(I__f)(U_-'P'UI)]dUsdU, X

× f f ,exp L_ cos(0a-- es-- _)dO,d02,
o Q

(6.126)

whe re

sen(x/2) sen(a-a/2)

l--cos x
_=arctg_---_T-.

(6.127)

(6.128)

The characteristic function (6.126) has a completely analogous form to the

expression (6.70). This allows to write down without further calculations the two-

dimensional probability density for the amplitudes U I and U2, by analogy with

(6.75):

u,u, IF _u,u_I [ u;+ u_ 7_(U_, U2)_ *'(i_;I,'i" °[_J exp 2JVI----_)I" (6.129)

As in (6.75), the obtained formula shows that at _---,0 the two amplitudes be-

come statistically independent of each other. In the present case, it follows from

(6,127) that this occurs at Aw--+OOor ata---_co, i.e., either for unlimited in-

crease of the difference between the two frequencies w t and _. orfor unlimited con-

traction of the frequency bands passed by both four-poles (as known, the pass band

width of a four-pole is inversely proportional to the settling time a).

The identity of the expressions (6.75) and (6.129) allows to use for the com-

putation of the mixed moment of the amplitudes U 1 and U 2 the exact formula (6.79)

as well as the approximations (6.83) and (6.84). It follows from the latter, from

(6.46) and from (6.127), that the correlation coefficient between the amplitudes U 1

and U 2 is approximately equal to

f ,,n (a.¢12)12
P,2_ t--Z-_a/-Y--J " (6.130)

Let us examine the change in the correlation coefficient with increased

detuning between the four-poles. For this purpose we shall examine the graph of

Figure 24. it is seen that the correlation between the envelopes of the noise volt-

S

ages vanishes practically (p12_0.05) at A_u, l.e., at

a • AI_ _ =, 0.83. (6.131)

If it is taken into account that the settling time and the pass band AF of a

selective system are connected by the approximate relation

" • AF_ I. (6.132)

it is easily seen that condition (6. 131) is to be spectrally interpreted as a

detuning in which the two four-poles block non-overlapping bands from the input

noise spectrum.
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if the two four-poles are terminated by ideal detect}rs (in the sense of 5 30)

whose output voltages are connected in opposition (according to the polarity of the

d.c. components of these voltages) then the mean square of the resulting noise volt-

age becomes, in accordance with (6.46) and (6.131):

OZres=o_-F o|--2pl,o,0,----0.8602{ !--

P_

05
\
\

I I
!

i

\
\

a_

(6.133)

Figure 24. Graph of the normalized correlation function

for noise voltages at outputs of four-poles

This expression shows that the mean square of the resulting noise varies as

a function of the product *_o_abetween zero and 0.86s z.

§33. Statistical Properties of the Voltage l_nvelope at the Output

of a Selective System Under Action of N mmodulated Signal
and Fluctuation Noise

We return to the problem considered in §30 and add to it the following condi-

tion. We assume that the selective system is acted up)n by the fluctuation noise

as well as by a nonmodulated oscillation of amplitude U_, and of frequencyequal to

the resonance frequency of the generator. This ease was also analyzed in the

publications cited in the above-mentioned section.

As far as the instantaneous values of the voltages and currents are concerned

the system is ILnear, and, by the principle of superposit: on, the random and the regu-

lar processes, which take place in the given case, can )e analyzed independently.

But, as had been already shown in §30, the problem of .he envelope is nonlinear,

and therefore the nonmodulated oscillation signal and tie fluctuation noise must be

considered together.

Let us find the one-dimensional distribution of th,, envelope of the output volt-

age. As was shown in §31, all phases of the noise volt.Lge vector are equallyprob-

able. In other words, the projection plane uv has c¢_mplete radial symmetry.

This allows to rotate arbitrarily the axes of u and v, pleserving, of course, their

mutual perpendicularity. For the present problem it t_ convenient to orientate the

u axis along the vectorUnof the signal and the v axis pl rpendicular to it. Then the
length of the resulting vdltage vector can be written as
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u-= Y(uo+=p+,, _ (6.134)

Applying formula (6.34) for the two-dimensional probability density of the

projections u and v and the general expression (6 33) for the characteristic

function, we obtain:

÷¢o

A,.,=f ""_" du du.
2_

- ,.x)

(6.135)

We introduce new integration variables U and 8 , connected with u and v by
the relations

U0-_- u = U ¢o$ 8; v= Usin 8. (6.136)

Then the characteristic function (6.135) becomes

A(,)= _o____,. _" auj,.. #o (6.13v)
q •

By calculating with the ald of the formula (8.71) the inner integral of (6.137)

and combining the obtained result with (6.38) we obtain:

O,2+ tT_
/UUo_ _,

_(u)= _ ,._-_-] c (6.138)

In the absence of a signal (U 0 = 0) and since 10(0) = I, the expresBion (6.138)

transforms, as expected, into (6.39). The other extreme is the case of very strong

signals. It is clear from geometrical considerations that for very large values of

U 0 it is not essential to account for the projection v. It follows, that in this case

the difference U--U 0 coincides with the projection u, and therefore

(u-r_?
| .....

o.'(U) -_ _e _ (6.139)

This result can be also readily obtained from (6,138) by the use of the asym-

ptotical expression for the Bessel function

ez

/o(X) _. _-._. (6.140)

Let us find the mean value of the amplitude U, or, which amounts to the same,

the d.c. component of the voltage at the output of the ideal detector, connected to

the output of the selective system:

fEo.=MIU]= UWI o • z,. dU. (6.141)
o

For the computation of the integral (6.141) we shall use the formula
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oo

fx,,.,,x,.-._dx = _v_,',,,{,o(_)-+-_[,.(_)-+,,(_)]}.,_.14_,
,!

This formula is obtained, if both sides of the equation

j- ,I _t q2
/o(qx)e-m'_dx= ,_e ,v /o(_-_p). (6.143)

o

are differentiated with respect to p.

This is given in the monograph by R.O. Kus'min ]4[] which deals with the

theory of Bessel functions. In view of (6.142) equation (6 141) assumes the follow-

ing form:

or, in view of (6.42) we obtain

o- .--',,.{,o(,)+,",,[0(,)+,.(;)]}. ,0.,,_,
where,} = Uo/V_2ois the ratio between the effective voltag,_s of signal and noise at

the output of the selective system.

Figure 25.
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q

Dependence of the dLmensionless rectLfLed voltage

on the signal-to-noise ratio at the

input of the detector

The graph of the relation Eof/E = =f(_]) correspoadtng to formula (6.145),

is given in Figure 25. It is evident from the graph that _ low signal (_]_ l) has no

substantial influence on the magnitude of the detected vo tage, which is essentially

determined by the noise. On the other hand, with strong siglmls(_>_ I), the pre-

mence of noise has littleeffect.
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Expression (6.138) makes it also possible to calculate the mean square of the

resultant amplitude U and the mean square of its fluctuation component.

$34. Statistical Properties of the Voltage Phase at the Output

of a Selective System under Action of a Nonmodulated Signal
and Fluctuation Noise

In the foregoing section the relations (6.136) introduced the random phase

{_ae the angle between the resultant vector U and the signal vector U 0. This angle

to expressed by the random projectLons u and v as follows,

t_

0 _--- arctg U0+" (6.146)

Let us examine the statistical properties of the phase _}. In view of expression

(8.34) for the two-dimensional probability density of the projections u and v the re-

lation (6.33) for the characteristic function can be given the followLng form:

÷Co Ut .b t_

- .. (6.14,>w w
-us

By replacing the integration variables in accordance with (6.136) we obtain,

U 1

4.= 0 ¢_ U=-_UUe ©,_m%

--= u

For the computation of the inner integral of (6.148) we use the formula

/ 1'  >11
o

where 4*(z} is the error probability integral:

*(z)= 2_/e-_-dx. (6.150)

Formula (6. 149) can be obtained from the tables /6/

=W- (6.151)

by differentiating both sides with respect to the parameter q.

In our case

I U-----Ecos O, (6.152)

and the application of formula (6.149) gives for the probability density of the phase

t_(6) the following expression:
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s -¢ 1

.(8): 2"--_'= 1 "_z * _1c°$ Oeq'c°a" 11 + * (7 c°s O)l}"

As in the fo;egoing section, we have _ _ Ud_r2a.

(6.153)

we note that at _] =-0 (no signal) the expression (6.153) transforms into (6.90).

Figure 26 shows curves of wL0), constructed from (6,153) for different values

of the ratio _]. It can be seen from this graph that the increase of the signal amp-

litude results in a concentration of the most probable values of the phase around O -_ 0.

This means, that under the given conditions the phase of the resulting oscillation is

to an ever increasing degree determined by the phase of tie signal.

Figure 26. Graphs of the probability density of the phase for

different signal-to-noise ratios

S 35. Computation of the Detector Output for Given Statistical Properties

of the Applied Voltage Envelope

It was shown above that the examination of the statistical properties of the

voltage envelope at the output of the selective system gay-' at the same time equiva-

lent results concerning the statistical structure of the vol-_ge at the output of an

ideal detector. If the distribution law of the envelope is Lnown, it is easy to cal-

culate also the detection effect for the most varied forms of the volt-ampere
characteristics of an inertialess detector. For this we here to know the relation

between the mean current value in the detector circuit and the amplitude of the ap-

plied alternating voltage. We call this relation the detecor characteristic.

We shall consider first a detector with an exponential volt-ampere character-

istic, as expressed by the equation (6.1). If a harmonic voltage

u -= U co$.,t ---_ U co$=, (6.154)

is applied to the detector, then the instantaneous current through it becomes

I-----Jo¢°_'_=. (6.155)

Ry averaging this current over one cycle of the flternating vottage, we
obtain the mean value of the current in the detector circuit:

,.,,....,.. (6.156)
o o
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We apply the formula (6.71) for the calculation of this integral and obtain the
equation for the detector characteristic:

]av_- ]o . ]o(aU). (6.157)

Let the detector be connected to the output of a selective system under fluctua-

ting input. Then the one-dimensional probability density of the voltage amplitude

at the detector is by equation (6.39), and the constant component of the current
in the detector circuit can be calculated with the aid of (5.29), in which we

have to put *_-- I:

U P'=Jay = Jo" Io(aU)" _'_ ¢-E_dU. (6.158)
0

We can compute this integral by representing the Bessel function /,,qa(') as

a power series (6.15) and then, with the aid of formula (6.44), integrating by parts

the thus obtained series in the integrand. Then simple transformations give :

, -'o,,lay _- Jo -_ = Jo e' (6.159)
Im==O

i. e., a result coinciding with the expression (6.6).

By analogous methods we can calculate moments of higher order for the mean

current, and obtain, for instance, the formula (6.16}. Of course, such a calculation

method is, in principle, unsuitable for the analysis of the statistical properties of

the instantaneous current in a detector circuit, as this current consists not only of

the slow-changing mean current but also of rapidly changing high-frequency compo-
nents. In many cases, however, these latter are of no interest. We shall make use

of the same method for the investigation of the statistical properties of the mean

current in a square-law detector, whose characteristic is given, as well known,

by the equation

Jay ----"JO "_-aU'. (6.160)

Using formula (5.20) at _ _ I and assuming, as before, that the probability

density m(U) is expressed by (6.38), we obtain.

J.v _ (Yo-Jr-aU=);-_e _'dU. (6,161)
o

Now, the application of formula (6.44) gives

J=,v = Jo-F 2ao _. (6.162)

We note that this result could have been obtained by averaging both sides of

equation (6.160) and taking into account that in the case under consideration the

mean square of the amplitude U is determined by the formula (6.45).

By an analogous method it is simple to compute the mean square of the cur-

rent Jav" Setting tn (5.20), _-_2. we obtain:

O_av= (JO-_ aUlP _¢-_ dU" (6.163)
l,
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By representing the Lntegral (6.163) as a sum of three integrals and by apply-

ing to each of them formula {6.44), we obtain

I
oa_v _ J_ q- 4aJo°_ Jr" 8aZ°6" (6.164)

The mean square of the noise component of the mea_ current is, by virtue of

{6.162) and (6.164)

O: _ 2 2OJ_,. -- Jay -_ 4a2a4. {6.165)

The mixed second moment of the mean current can be calculated, using ex-

presslon (5.24) and formula (6.75) for the two-dimensional probability density of the

envelope. In this case one encounters somewhat greater computational difficulties

then those above.

The monograph of V.I. Bunimovich /4/ analyzes bebide the problems consid-

ered above, a number of other analogous problems. The case of a broken line

characteristic of the nonlinear element under normally tistributed input is

examined in the work by I.N. Amiantov and V.I. Tikhonov /42/.

118



I°

2.

3,

4.

5°

6.

7,

8,

9,

10.

11.

t2.

13.

BIBLIOGRAPHY

14.

K o 1 m o g o r o v, A.N., Osnovnye ponyatiya teorii veroyatnostei (Foundations

of probability theory), ONTI (United Scientific and Technical Publishing

houses), 1936.

S 1 u t s k i i, E.E., O svyaznykh sluchainykh funktsiyakh odnoi nezavisimoi

peremennoi (On dependent random functions of a single independent variable),

Trudy pervogo Vsesoyuznogo s"ezda matematikov v 1929 g.v g. Khar'kove

(Works of the First All-Union Mathematicians Congress of 1929 in
Khar'kov), ONTI, 1936.

Y a g 1 o m, A.M., Vvedenie v teoriyu statsionarnykh sluchainykh funktsii

(Introduction to the theory of stationary random functions), UMN

(Progress of Mathematical Sciences), No 5, 3-168. 1952.

B u n i m o v i c h, V.I., Flyuktuatsionnye protsessy v radiopriemnykh ustrois-

tvakh (Fluctuation processes in radio receiving apparatus), Izd. wSov.
radio"(Soviet Radio Publications), 1951.

F r a i, T., Teoriya veroyatnostei dlya inzhenerov (Probability theory for

engineers), ONTI, 1934.

Ryzhik, I.M., Gradshtein, I.S., Tablitsyintegralov, summ, ryadovi

proizvedenii (Tables of integrals, sums, series and products),

Gostekhizdat (State Publishing House of Theoretical and Technical
Literature), 1951.

C r a m e r , H. , Sluchainye velichiny i raspredeleniya veroyatnostei (Random

variables and probability distributions), IL (Foreign Literature Publishing

House), 1947.

P u g a c h e v, V.S., Obshchaya teoriya korrelyatsii sluchainykh funktsii

(General correlation theory for random functions), Izv: AN SSSR, seriya

matematicheskaya (Bulletin of the Academy of Sciences of the USSR,
Mathematical Series), 17, No 5, 401-420, 1953.

Pugac hev, V.S., Teoriya sluchainykh funktsii i ee primenenie k zadacham

avtomaticheskogo upravleniya (Theory of random functions and its applica-

tion to problems of automatic control), Gostekhlzdat, 1957.

K o n t o r o v i c h, M.I., Operatsionnoe ischislenie i nestatsionarnye yavleniya

v elektricheskikh tsepyakh (Operational calculus and nonstationary
phenomena in electrical circuits), Gostekhizdat, 1955.

Osnovy avtomaticheskogo regulirovaniya, pod red. Solodovnikova, V.V.,

(Fundamentals of automatic control, edited by V.V. Solodovnikov),

Mashgiz (State Scientific and Technical Publishing House of Literature on

Machinery), 1954.

N yq u i s t, H., Thermal agitation of electric charges in conductors.

Physical Review, 32, 110-113, 1928.

G o i 'd m a n, S. , Garmonicheskii analiz, modulyatsiya i shumy (Harmonic

analysis, modulation and noise), IL, 1951.

G r a n o v s k i i, V.L., E lektricheskie flyuktuatsii (Electrical fluctuations),

ONTI, 1936.

119



15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

K o 1 m o g o r o v, A.N., Statsionarnye posledovatel'nosti v gil'bertovom

prostranstve (Stationary sequences in Hilbert space), By_lleten' MGU

(Bulletin of the Moscow State University) 2, No 6, 1-40, 1941.

K o 1 m o g o r o v, A. N., Interpolirovanie i ekstrapoli:'ovanie statsionarnykh

sluchainykh posledovatel'nostei (Interpolation an( extrapolation of

stationary random sequences), Izv. AN SSSR, seriya matematicheskaya

(Bulletin of the Academy of Sciences of the USSR Mathematical Series},

No 5, 3-14, 1941.

W i e n e r, N., The extrapolation, interpolation and emoothlng of stationary

time series with engineering application. New Y_rk, 1949.

James, H., Nichols, N., Phillips, R., Teoriya sledyashchikh

sistem (Theory of servo-mechanisms), IL, 1951

S o 1 o d o v n i k o v, V.V., Vvedenie v statisticheskuy_ dinamiku sisters

avtomatieheskogo upravleniya (Introduction to statistical dynamics of

automatically controlled systems), Gostekhizdat, 1952.

Pu g ac h e v, V.S., Obshchee uslovie minimuma srednei kvadraticheskoi

oshibki dinamicheskoi sistemy (The general conc [tions for the minimum

of the mean square error of a dynamic system), Avtomatika i tele-
mekhanika (Automation and Telemechanics), 17, No 4, 289-295, 1956.

Pu g a c h e v, V.S., Primenenie kanonichesktkh razl _zhenii sluchainykh

funktsii k opredeleniyu optimal'noi lineinoi sistemy (Application of

canonical analysis of random functions to the det _rmination of optimal

linear systems), Avtomatika i telemekhanika, 17, No 6, 489-499, 1956.

P u g a c h e v, V.S., Vozmozhnoe obshchee reshenie )roblemy opredelerdya
optimal'not dinamicheskoi sistemy(A possible gen_ ral solution of the problem of

determination of an optimal dynamical system}, _vtomatika i tele-

mekhanika, 17, No 7, 585-589, 1956.

P u g a c h e v, V.S., Integral'nye kanonicheskie pred_tavleniya sluchainykh

funktsii i ikh primenenie k opredeleniyu optimal'_lykh lineinykh sistem

(Integral canonical representation of random fum tions and their applica-

tion to the determination of optimal linear syster_s), Avtomatika i

telemekhanika, 18, No 11, 971-984, 1957.

K o t e 1 ' n i ko v, V.A., Teoriya potentsial'noi pomebhoustoichivosti (Theory

of potential noise-stability), Gosenergoizd (State Power Engineering

Publishing House}, 1957.

Kuznetsov, P.I., Stratonovich, R.L., Tikhonov,V.I.,Prokhozh-

denie sluchainykh funktsii cherez lineinye sisterfy (Transmission of

random functions through linear systems), Avtor:mtika i telemekhanika,

14, No 2, 144-163, 1953.

K o 1 m o g o r o v, A. N., Ob analitichesktkh metodakh v teorii veroyatnostei

(On analytical methods in probability theory), U_.IN (Progress of Mathe-

matical Sciences), No 5, 5-41, 1938 (first published in Math, Ann., 104,

415-458, 1931).

L e o n t o v i o h, M.A., Statisticheskaya fizika (Statistical physics), GITTL

(State Publishing House of Technical and Theoretical Literature), 1944.

120



28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39,

40,

Pontryagtn, L., Andronov, A., Vitt,A., Ostatisticheskom ras-
smotrenii dinamicheskikh sistem (On the statistical study of dynamic

systems), ZhETF (Journal of Experimental and Theoretical Physics),
3, No 3, 165-180, 1933.

B e r s h t e i n, I.L.. Flyuktuatsii v avtokolebatel'noi sisteme i opredelenie

estestvennoi razmytosti chastoty lampovogo generatora {Fluctuation in

self-oscillating systems and determination of the natural levelling of the

frequency in a tube generator), ZhETF, 11, No 4, 305-318, 1941.

B e r s h t e i n, I.L., Fly-uktuatsii amplitudy i fazy lampovogo generators

{Fluctuation of amplitude and phase of tube generator), Izv. AN SSSR,

seriya fizicheskaya (Bulletin of the Academy of Sciences of the USSR,

Physcis Series), No 2, 145-173, 1950.

G o r e 1 i k, G.S., Nelineinye kolebaniya, interferentsiya i flyuktuatsiya
(Nonlinear oscillation, interference and fluctuations), [zv. AN SSSR,

seriya fizicheskaya, No 2, 187-198, 1950.

R ytov, S.M., Flyuktuatsii v avtokolebatel'nykh sistemakh tomsonovskogo
tipa (Fluctuations in self-oscillating systems of the Thomson type),

ZhETF, 29, No 3, 304-328, 1955.

Kuznetsov, P.I., Stratonovich, R.L., Tikhonov, V.I., Vozdeistvie

_lektricheskikh flyuktuatsii na lampovyi generator (Action of electrical

fluctuations on tube generators), ZhETF, 28, No 5, 614-616, 1955.

G o n o r o v s k i i, I.S., Eshche o flyuktuatsii fazy v lampovom generatore (More

on the phase fluctuation in tube generators), Radiotekhnika i elektronika

(Radiotechnology and Electronics), 2, No 10, 1279-1288, 1957.

Kuznetsov, P.I., Stratonovich, R.L., Tikhonov, V.I., Prokhozh-

denie sluchainykh funkt6ii cherez nelineinye sistemy (Transmission of

random functions through nonlinear systems), Avtomatika i telemekhanika

14, No 4, 375-391, 1953.

G u t ki n, L.S., Vzaimodeistvie signals i shuma v inertsionnom detektore
{Interaction of signal and noise in inertial rectifiers), Radiotekhnika (Radio-

technology), 11, No 2, 51-62, and No 3, 43 - 53, 1956,

Tikhonov, V.I., Vozdeistvie malykh flyuktuatsiina elektronnoe rele

{Action of small fluctuations on electronic relays), Veatnik Moskovskogo

universiteta {Moscow University Herald), No 5, 31-41, 1956.

T i k h o n o v, V.I. , Vozdeistvie bol'shikh flyuktuatsii na elektronnoe rele

{Action of large fluctuations on electronic relays), Radiotekhnika i

elektronika (Radiotechnology and Electronics), 1 ,No 2, 213-224,1658.

R i c e, S., Teoriya flyuktuatsionnykh shumov {Theory of random noise), in the

collection of translations; "Teoriya elektricheskikh signalov pri naliehii

pomekh"(Theory of electrical signals in the presence of interference),

edited by N. A. Zheleznov, 88-238, IL, 1953.

C r a m e r, H., Matematicheskie metody statistiki {Mathematical methods of
statistics), IL, 1948.

121



41.

42.

Kuz i rain, R.O., Besselevy funktlii (Bessel functi.ons), GTTI (State

Publishing Houae for Technical and Theoretical Literature), 1935.

A rn ia n t o v, I.N., T i k h o n o v, V.I., Vozdeistvie normal'nykh flyuktuatsii

na tipovye nelineinye elementy (Action of normal fluctuations and

standard nonlinear elements)° Izv. AN SSSR, otd. tekhn, nauk

(Department of Technical Sciences), No 4, 33-4i, 1956.

122


